
Wait-Signal
Pseudocode

Peter J. Denning

© 2022, Peter J. Denning 1

Implementing semaphores

• Objective is to implement the wait state in the
thread-state diagram.
• Each state is presented by a FIFO queue listing all

the threads in that state.
• Every thread is always in exactly one queue.
• State changes only when threads change queues,

are created, or are terminated.
• The wait state is actually a set of queues, one for

each semaphore; each semaphore represents a
particular reason for waiting.

© 2022, Peter J. Denning 2

© 2022, Peter J. Denning

running ready

waiting

SAVESW (time out)

wait signal

Process States

LOADSW (next in RL)

3

© 2022, Peter J. Denning

Queues for Running and Ready States

tid

tid

tid

CPUs

RL.head RL.tail

4

© 2022, Peter J. Denning

Queues for Running and Ready States

tid

tid

tid

RL.head RL.tail

CPUs

Here 3 CPUs are available to run separate
threads. Each CPU is a “running queue” of
length 1.

When a CPU times out, SAVESW saves its
stateword and moves its tid to tail of the
RL queue. Then it moves the RL.head tid
into the CPU and LOADSW retrieves its
stateword from that thread’s TCB.

5

© 2022, Peter J. Denning

Queues for Running and Ready States

tid

tid

tid

head tail

CPUs

LOADSW

SAVESW

Here the second CPU has timed out and
cycled its running thread to the RL.tail.

1

2

6

© 2022, Peter J. Denning

Queues for Running and Ready States

tid

tid

tid

CPUs

0

RL
descriptor

TCBs

The RL queue is a linked list from head to
tail using the link fields in the TCBs.

head tail

7

© 2022, Peter J. Denning

Queues for Wait States

head tailcount

Each semaphore is a condition that can be
waited for. Has its own lock, count, and queue
– all stored in a semaphore control block (SCB).
Each line above is the content of a SCB.

lock

8

© 2022, Peter J. Denning

Queues for Wait States

head tail

s.c

count

Lock of semaphore s is s.l
Count of semaphore s is s.c
Queue of semaphore s is s.q

semaphore s: s.qs.l

lock

9

© 2022, Peter J. Denning

Queues for Wait States

head tail

s.c

count

WAIT(s) executed by a
running thread.

Subtracts 1 from the
count.

If count result is <0, puts
tid at tail of queue and
with LOADSW starts next
ready thread (RL.head).

If count result is ≥ 0, WAIT
returns without waiting.

WAIT(s)

s.q

10

© 2022, Peter J. Denning

Queues for Wait States

head tail

s.c

count

SIGNAL(s) executed by a
running thread.

Adds 1 to the count.

If count result is ≤0,
move tid from s.q.head
to RL.tail.

Returns without waiting

SIGNAL(s)

s.q

11

© 2022, Peter J. Denning

running ready

waiting

SAVESW (time out)

wait signal

LOADSW (next in RL)

0

RL
descriptor

TCBs

head tail

head tailcountlock

tid

tid

tid

CPUs

SCBs

12

© 2022, Peter J. Denning

running ready

waiting

SAVESW (time out)

wait signal

LOADSW (next in RL)

0

RL
descriptor

TCBs

head tail

head tailcountlock

0

d

d

Different queues are
threaded through the
TCB list using the link
(next) fields.

13

PSEUDOCODE FOR WAIT AND SIGNAL KERNEL CALLS

WAIT(s):
with s.lock:

s.c--

if s.c<0 then
SAVESW
attach(tid, s.q)

tid = detach(RL)
LOADSW

return

sem s: structure with
c: counter
q: queue

lock: lock

SIGNAL(s):
with s.lock:

s.c++

if s.c≤0 then
t = detach(s.q)
attach(t, RL)

return

attach(i, queue): link i to tail of queue
i = detach(queue): unlink and return head of queue
NOTE: attach and detach lock RL during access

RL: Ready List
tid: CPU register holding ID of running thread

© 2022, Peter J. Denning 14

PSEUDOCODE FOR SEMAPHORE CREATE AND DELETE

SCB: array of M control blocks (M>N, number of processes) each with
lock :lock with TSL during “with” statements
counter :counter

queue :(head, tail) descriptor of queue
link :next SCB in system free list

Initially (boot time) all SCBs linked on a system free list

Kernel provides two more operations:

s = CREATE_SEM(I≥0), return index s of a new SCB with initial count I
DELETE_SEM(s), DELETE_SCB[s]

There are many ways to implement CREATE and DELETE, but the details
are not important here.

© 2022, Peter J. Denning 15

