
Semaphores

Peter J. Denning

Process Waiting

• Most processes must coordinate with one
another and with the user.

• Signals and message exchange are the basic
tools for coordination among processes.

• Need method to make process wait until a
signal (or message) comes from another
process.

© 2022, Peter J. Denning
2

running ready

waiting

SAVESW (time out)

wait signal

Process States

LOADSW (next in RL)

3
© 2022, Peter J. Denning

Examples

• Performer waiting for customer to make request
• ATM waiting for someone to make transaction
• Traffic signal waiting for car to arrive
• SETI central waiting SETI slaves to send results
• Consumer waiting for next items to appear in the

buffer (or pipe)
• Producer waiting for next empty space in the

buffer (or pipe)

© 2022, Peter J. Denning
4

Semaphore
• An object used to allow a process to wait on a

condition, represented by a semaphore s.
• Two operations:

– WAIT(s):
• caller asks if condition s is true
• if condition true, pass without waiting
• If condition false, go to sleep

– SIGNAL(s):
• caller signals that the condition s has come true
• awakens a sleeping process, if any
• does not wait

© 2022, Peter J. Denning
5

Semaphore Mechanics
• Semaphore s contains a counter and a queue.

– Queue is FIFO list of processes waiting on semaphore
• Head, tail, links threaded through PCBs

– Count means
• If <0, (absolute) count is number waiting
• If ≥0, count is number of free passes

– Initially counter has value ≥0, queue empty

© 2022, Peter J. Denning
6

Semaphore -- Notation

• Semaphore s [k]
• [k] means initial count is k (k≥0)
• s.c = counter
• s.q = queue
• WAIT(s)
• SIGNAL(s)

© 2022, Peter J. Denning
7

P1

P2

Basic Idea: synchronization “A before B”

A

B

“P2 cannot pass B until P1 passes A”

Commonly, A is the EXIT of P1
and B is the ENTRY of P2:

sequencing processes

8
© 2022, Peter J. Denning

P1

P2

A

B

Semaphore s [0]

SIGNAL(s)

WAIT(s)

s

Semaphores can implement basic synchronization

9
© 2022, Peter J. Denning

P1

P2

A

B

SIGNAL(s)

WAIT(s)

s

Semaphores can implement basic synchronization

0 ()

count queue

(a)

1 ()(b)

0 ()(c)

P1 reaches A

P2 reaches B

0 ()

count queue

(a)

-1 (P2)(b)

0 ()(c)

P2 reaches B

P1 reaches A

10
© 2022, Peter J. Denning

P1

P2

A

B

SIGNAL(s)

WAIT(s)

s

Semaphores can implement basic synchronization

0 ()

count queue

(a)

1 ()(b)

0 ()(c)

P1 reaches A

P2 reaches B

0 ()

count queue

(a)

-1 (P2)(b)

0 ()(c)

P2 reaches B

P1 reaches A

No matter what, receipt of
signal at B always happens
after sending at A.

11
© 2022, Peter J. Denning

Mutual Exclusion

• Critical section of code: accesses shared data.
• Requirement that a critical section be executed

by at most one process at a time: avoid race
conditions on the shared data.

• Semaphore s [1] locks the critical section.

• s stands for condition “critical section free”

WAIT(s)
<Critical Section>
SIGNAL(s)

© 2022, Peter J. Denning
12

WAIT(s)
Update D
SIGNAL(s)

WAIT(s)
Update D
SIGNAL(s)

WAIT(s)
Update D
SIGNAL(s)

WAIT(s)
Update D
SIGNAL(s)

D s
1 ()

count queue

(a)

0 ()(b)

-1 (P2)(c)

semaphore
initially 1

-2 (P2,P3)(d)

-1 (P3)(e)

initial

P1 in D

P2 requests D

P3 requests D

P1 exits; P2 enters D

P1 P2

P3 P4

Mutual Exclusion

-2 (P3,P4)(e)P4 requests D

-1 (P4)(e)P2 exits, P3 enters D

0 ()(e)P3 exits, P4 enters D

1 ()(e)P4 exits D

13
© 2022, Peter J. Denning

Race Conditions

• One of the most common coordination problems
is preventing races among two or more
processes.

• When two processes share data, the final result
may depend on their speeds and order, giving
random and unpredictable results.

• ATM example illustrates. Alice and Bob share an
account at the bank and can perform transactions
from ATMs at any time.

© 2022, Peter J. Denning
14

Alice:
withdraw $100

Bob:
deposit $200

$1000
$1100

Bank database

ATM ATM

15
© 2022, Peter J. Denning

Alice:
withdraw $100

Bob:
deposit $200

read bal

sub $100

write bal

read bal

add $200

write bal

$1000

16
© 2022, Peter J. Denning

Alice:
withdraw $100

Bob:
deposit $200

read bal

sub $100

write bal

read bal

add $200

write bal

$1000

$900
$1000

$1200

$1000
$1200

17
© 2022, Peter J. Denning

Alice:
withdraw $100

Bob:
deposit $200

read bal

sub $100

write bal

read bal

add $200

write bal

$1000

$900

$1000

$1200

$1000
$900

18
© 2022, Peter J. Denning

Critical Section

Segment of program that must be executed
as a unit in order to avoid race conditions.

Atomicity

Executions must be one after the other, not
at the same time – order matters but no
internal races.

Serialization

19
© 2022, Peter J. Denning

read bal
sub $100
write bal

read bal
add $200
write bal

read bal
sub $100
write bal

read bal
add $200
write bal

or but not read bal
sub $100
write bal

read bal
add $200
write bal

20
© 2022, Peter J. Denning

Spin Locks - 1

• It is not always feasible to implement “wait
for a lock” by a queue.

• Sometimes cycling on testing a lock until
someone unlocks it is the only way.

© 2022, Peter J. Denning
21

Spin Locks - 2

• Multiple independent CPUs accessing TCBs
and RL is a common example.
– Cannot allow race conditions updating TCBs-RL
– Need to mutually exclude multiple CPUs

accessing these shared structures.
– Cannot implement a queue – need to lock the

TCB-RL structures to do that (circularity).

© 2022, Peter J. Denning
22

Spin Locks – 3

L: if x=1 then goto L
x=1
<Critical Section>
x=0

while(x=1) do { }
x=1
<Critical Section>
X=0

These are two equivalent ways
to try to program a lock to
protect a critical section of code.

Do you see the bug?

© 2022, Peter J. Denning
23

Spin Locks - 4

• Test and Set lock instruction, TSL(x)
• x is a memory location used for the lock

– 0 means unlocked
– 1 means locked

• TSL(x) means: in one (uninterruptable)
instruction cycle, read and return the
contents of x and replace them with 1.

© 2022, Peter J. Denning
24

Spin Locks - 5

while(TSL(x)) do { }
<Critical Section>
X=0

Now the testing-setting is atomic.

Do you see how to prove that two
CPUs cannot be in the CS at once?

Hint: assume they are, find a
contraction to the definition of TSL.

with lock {
<Critical Section>
}

Simplified way to do the above spin
lock in a programming language.

Compiler translates “with”
statement to the above code.

© 2022, Peter J. Denning
25

PSEUDOCODE FOR WAIT AND SIGNAL KERNEL CALLS

WAIT(s):
with s.lock:

s.c--
if s.c<0 then

SAVESW
attach(PID, s.q)
set PID = detach(RL)
LOADSW

return

sem s: structure with
c: counter
q: queue

lock: lock

SIGNAL(s):
with s.lock:

s.c++
if s.c≤0 then

P = detach(s.q)
attach(P, RL)

return

attach(i, queue): link i to tail of queue
i = detach(queue): unlink and return head of queue
RL: Ready List
PID: CPU register holding ID of running process

26
© 2022, Peter J. Denning

PSEUDO CODE FOR SEMAPHORE CREATE AND DELETE

SCB: array of M control blocks (M>N, number of processes) each with
lock :lock with TSL during “with” statements
counter :counter
queue :(head, tail) descriptor of queue
link :next SCB in queue

Kernel provides two more operations:

s = CREATE_SEM(I≥0), return index s of a new SCB with initial count I
DELETE_SEM(s), DELETE_SCB[s]

There are many ways to implement CREATE and DELETE, but those details
are not important here.

27
© 2022, Peter J. Denning

Suspend and Resume

• Suspended is a process state in which the
process may not use the CPU or memory

• A process can be suspended or resumed
only by one of its parents
– SUSPEND(p) is kernel call to suspend process p.
– RESUME(p) is kernel call to restore process p

to normal operation with CPU and memory.

• Not a semaphore operation
© 2022, Peter J. Denning

28

Sleep and Wakeup

• A common synchronization pattern occurs
with requests to service processes and
their responses.

...

put (self, params) into INBOX[s]
SIGNAL(q)
SLEEP
get R from INBOX[self]
continue
...

WAIT(q)
get (p, params) from INBOX[self]
perform the service with params
place response R in INBOX[p]
WAKEUP(p)
LOOP

process p server s INBOX[p] INBOX[s]

© 2022, Peter J. Denning
29

• SLEEP means: put the caller from running
into the “sleeping” state

• WAKEUP(p) means: move p from “sleeping”
to ready state

• Can implement with private semaphore:
psem[p] can be waited on only by p. Initial
value of counter is 0.
– SLEEP = WAIT(psem[self])
– WAKEUP(p) = SIGNAL(psem[p])

© 2022, Peter J. Denning
30

• Much more efficient implementation.
– If p is not waiting, count=0 and queue=().
– If p is waiting, count=-1 and queue=(p)

• Represent these two states with “waiting” bit.
• However, in the request-response protocol,

the responder may execute WAKEUP before
the requester SLEEPs. Corresponds
semaphore count =1.

• Represent this with “wakeup waiting” bit.

© 2022, Peter J. Denning
31

Pseudocodes

with TCB[self]
if wakeupwaiting=0

wait=1
SAVESW
LOADSW

else
wakeupwaiting=0

return

SLEEP
with TCB[p]
if waiting=0

wakeupwaiting=1
else

attach(p,RL)
waiting=0

return

WAKEUP(p)

32
© 2022, Peter J. Denning

