
Concurrency Control

Peter J. Denning

Society of Cooperating Processes

• Processes run autonomously at unknown speeds
• Processes outnumber the CPUs that execute them
• Processes exchange messages containing requests and

responses
• Processes synchronize, forcing an order on some actions
• Processes wait for resources to be assigned

2© 2022, Peter J. Denning

A Note on Terminology

• Thread = trace of instructions executing in a program
• Process = program in execution on a virtual machine
• Process includes one or more threads, working memory, and

other elements
• Terms process and thread are often used interchangeably,

including here
• Listen carefully to the conversation to see which meaning

“process” has

3© 2022, Peter J. Denning

The Job of Concurrency Control

• Implement thread states running, ready, and
waiting; and manage the transitions among them.

• With this framework, the OS from kernel level 3
upwards looks like a society of cooperating
processes.

• Use only tools available at Level 1: instructions,
stacks, interrupts, kernel mode, privileged
instructions, PSWs, statewords, memory mapping.

4© 2022, Peter J. Denning

5© 2022, Peter J. Denning

running ready

waiting

SAVESW (time out)

WAIT SIGNAL

Process States

LOADSW (next in RL)

CPU multiplexing manages the
transitions of threads between the
running and ready states.
Discussed in Module 1.

Semaphores implement the waiting
state, WAIT and SIGNAL manage
the transitions into and out of the
waiting state. Discussed in this
Module 3.

Basic Functions

• Representing processes and their states
– Thread control blocks, queues

• Multiplexing
– Of CPUs among available (ready) threads

• Basic synchronization
– Semaphores

• Anticipation of common synchronization patterns
– Serialization, mutual exclusion, producer-consumer, determinacy

(removal of lurking bugs), deadlocks

6© 2022, Peter J. Denning

Concurrency Control
as Abstract Machine

• Internal hidden data structures
– TCBs, SCBs, RL, semaphore queues

• Interface
– p=CREATE_THREAD(init IP), s=CREATE_SEM(init count)

– DELETE_THREAD(p), DELETE_SEM(s)

– SUSPEND(p), RESUME(p)

– WAIT(s), SIGNAL(s)

– SLEEP, WAKEUP(p)

7© 2022, Peter J. Denning

Performance!

• Operations must be extremely fast
• Small, fixed overhead independent of queue lengths
• TSL locks used only for very short lock times
• TSL locks not used above kernel level 2
• Procedure calls whenever possible instead of

context switches
• Interrupt dispatch extremely fast

8© 2022, Peter J. Denning

