
Module	3		--	Concurrency	Control	
1/31/19	
	
	

In	Module	1	we	said	that	the	OS	is	a	“society	of	processes”	but	we	did	not	answer	
questions	that	the	kernel	must	solve	to	make	this	so.		These	questions	include	the	
mechanics	of	implementing	multiple	processes	on	machines	with	one	(or	a	small	
number	of)	CPU,	synchronizing	them,	and	using	them	to	solve	common	coordination	
problems	within	operating	systems.		We	take	these	questions	up	now.	
Implementation	of	processes.		A	process	consists	of	at	least	one	thread	and	a	
defined	memory	region.		A	thread	is	an	execution	stream	–	the	sequence	of	
instructions	executed	by	the	CPU	as	it	follows	the	program	code.		To	implement	
many	processes	on	a	machine	with	a	single	CPU,	we	need	a	means	of	preserving	the	
process	image	–	a	complete	record	of	the	program’s	entire	execution	state.		The	
process	image	includes	

its	current	contents	in	RAM,	
its	stack,	
its	Processor	Status	Word	(PSW),	and	
its	process	control	block	(PCB).	

The	PCB	stores	the	CPU	state,	often	called	CPU	context,	a	copy	of	all	the	volatile	CPU	
registers,	including	the	processor	status	word,	that	we	must	save	in	order	to	restore	
a	non-running	process	to	execution	later.		We	add	a	process	identifier	(PID)	register	
to	the	CPU	so	that	we	know	which	process	is	running	on	the	CPU.	

The	PSW	is	a	series	of	bits	indicating	contextual	operating	modes	for	the	CPU	–	
notably,	a	bit	selecting	between	user	and	kernel	mode,	a	series	of	bits	indicating	the	
current	setting	of	the	interrupt	masks,	and	the	program	counter	(PC),	which	is	the	
address	of	the	next	instruction	to	be	executed.			The	PSW	is	saved	as	part	of	“return	
information”	in	a	procedure	call	and	is	restored	upon	return	from	the	called	
procedure.	

We	assign	a	PCB	to	each	process.		The	OS	manages	all	the	PCBs	in	a	data	structure	
that	it	owns	in	private	memory.		The	PCB	contains	all	the	necessary	CPU	state	
information	of	each	process,	including	the	context.		We	allow	a	process	to	run	on	the	
CPU	for	a	limited	period	of	time	called	a	time	slice.		At	the	end	of	a	time	slice,	we	stop	
the	CPU	and	copy	out	its	context	to	the	PCB	of	the	process	assigned	to	the	CPU.		
Then	we	load	the	context	of	another	process	and	let	it	run	on	the	CPU	for	a	time	
slice.		The	operation	of	saving	the	CPU	context	to	a	PCB	is	generically	called	“save	
stateword”	SAVESW.		Likewise	the	operation	of	loading	the	CPU	context	from	a	PCB	is	
called	“load	stateword”	LOADSW.		The	three-action	sequence	

(SAVESW, choose next process k, LOADSW(k)) 
is	called	a	context	switch.	

Notice	that	so	far	we	have	defined	two	main	states	of	a	process:	running	(on	the	
CPU)	and	ready	(off	the	CPU).		Running	means	the	process	is	executing	instructions	



and	Ready	means	it	is	not	running	but	is	ready	to	run	the	next	time	it	is	selected	by	
context	switch.		The	list	of	ready	processes	is	called	the	ready	list	and	can	be	
implemented	by	chaining	together	the	PCB’s	of	all	the	ready	processes.	
At	the	end	of	a	time	slice	we	use	a	timer	interrupt	to	trigger	the	context	switch.		A	
hardware	timer	on	the	CPU	is	initialized	to	the	time	slice	length	at	each	LOADSW.		
When	it	times	out,	it	triggers	the	timer	interrupt.		The	timer	interrupt	handler	calls	
the	OS	dispatcher	(scheduler)	which	gets	the	index	k	of	the	first	process	in	the	ready	
list,	and	places	the	index	of	the	running	process	at	the	end.		After	the	dispatcher	
returns,	the	timer	interrupt	handler	performs	the	context	switch.	
As	you	can	see,	there	are	many	intricate	details	to	implement	process	multiplexing	
on	a	CPU.		Once	all	this	is	done,	all	the	user	sees	is	a	set	of	concurrent	processes	that	
appear	to	run	in	parallel.		The	details	of	the	multiplexing	are	completely	hidden.	

Synchronizing	processes.		Processes	need	to	be	constrained	so	that	they	interact	
properly	and	do	not	cause	problems	for	each	other.		Synchronization	names	the	
requirement	that	one	process	stops	to	wait	for	another	do	something.		To	
implement	synchronization,	we	add	a	third	state	–	waiting	–	to	a	process.		We	
represent	the	condition	for	which	the	process	is	waiting	as	a	semaphore	s.		When	a	
process	potentially	needs	to	wait	for	some	synchronizing	condition	it	executes	the	
kernel	operation WAIT(s),	which	forces	it	into	the	wait	state	until	another	process	
indicates	that	the	condition	is	satisfied	via	the	kernel	call	SIGNAL(s).		It	is	possible	
that	the	signal	arrives	before	the	receiving	process	waits,	in	which	case	the	receiver	
does	not	have	to	wait.	
Semaphore	synchronization	is	provided	at	a	very	low	level	in	the	kernel	(Level	2).		
The	text	book	indicates	another	method	of	synchronization,	the	monitor.		This	is	a	
high	level	language	construct	that	systems	and	applications	programmers	use.		The	
compiler	translates	a	monitor	specification	into	semaphores	and	condition	
variables.		You	should	read	the	examples	of	monitors	in	the	textbook.		We	are	not	
going	to	study	them	in	depth	because	they	are	not	part	of	the	kernel.	Once	you	
understand	semaphores,	understanding	how	monitors	and	other	synchronization	
methods	work	will	be	straightforward.	
Coordination	patterns.		Certain	patterns	of	synchronization	arise	so	often	that	we	
have	given	them	names	and	have	specified	how	to	set	up	semaphores	for	each	case.		
The	main	patterns	are:	

• Mutual	exclusion.		A	critical	section	of	code	manipulates	shared	data.		To	prevent	
races	and	conflicts	on	updating	the	shared	data,	we	lock	the	critical	section	with	
a	semaphore.		Alternative	name:	serialization,	since	the	shared	critical	section	
code	is	executed	to	completion	in	one	process	before	the	next	can	enter.	

• Producer-Consumer.		One	process	generates	a	stream	of	data	into	a	buffer;	
another	removes	it	from	the	buffer.		The	producer	cannot	proceed	if	the	buffer	is	
full.		The	consumer	cannot	proceed	if	the	buffer	is	empty.		In	between,	the	
consumer	cannot	be	allowed	to	get	ahead	of	the	producer.		Buffers	of	this	form	
are	used	throughout	the	OS.	



• Private	semaphore.		A	semaphore	that	can	be	waited	on	only	by	its	owner.		Used	
to	implement	SLEEP and	WAKEUP(k)	operations.		Process	k	goes	to	sleep	while	
another	process	j	does	a	task	for	it;	on	completion	process	j awakens	process	k.	

• Readers	and	Writers.		A	set	of	processes	can	read	a	file	and	another	set	can	write	
into	it.		If	a	writer	is	writing,	no	other	process	can	read	or	write.		If	no	process	is	
writing	any	number	of	readers	can	read.		How	do	set	this	up	so	that	gangs	of	
readers	or	writers	cannot	lock	out	the	others?	

• Deadlock	Avoidance.		A	deadlock	is	a	circular	wait	among	2	or	more	processes,	in	
which	each	one	is	waiting	for	another	to	release	a	resource.		Common	strategies	
for	deadlock	avoidance	include	get-all-resources-up-front-before-staring,	and	
ordered	resource	locking.	

• Dining	Philosophers.		A	common	test	scenario	for	whether	a	synchronization	
scheme	will	result	in	deadlock.		N	philosophers	eat	spaghetti	from	N	plates	
around	a	round	table.		A	fork	is	between	each	pair	of	plates	(N	forks).		A	
philosopher	needs	both	forks	next	to	the	plate	to	begin	eating.		How	to	manage	
synchronization	so	there	is	no	deadlock?	

	
Resources	

Text	Ch	5,	especially	§5.0-1	&	§5.8	(concepts	around	semaphores)p	
Text	Ch	6,	especially	§6.5	(deadlocks)	

Parallel	Computing	and	the	OS	(video	recording	of	Frans	Kaashoek’s	20-min	talk	
at	the	SOSP	history	day	2015,	accessible	via	on-campus	network)	
In	Resources/documents	directory:	

	 Deadlocks.pdf			(supplemental	slides	about	deadlocks)	
	 Parallelism.pdf		(overview	of	parallelism	including	semaphores)	

	 Dijkstra-1965.pdf	(original	solution	to	the	critical	section	problem)	 	

	 Monitors-3070.pdf	(overview	of	the	monitor	construct)	
	


