
Security in Operating Systems

Peter J. Denning
July 2019

What is security?

• Security is an assessment of trust that a computer
system protects data and assets and is safe to use

• How is this assessment grounded?
– Record of system safety and reliability
– Record of successfully resisting malware attacks
– Trustworthy authentication
– Encryption
– Data protection safeguards in place
– User declarations regarding privacy and sharing honored

© 2019, Peter J. Denning 2

© 2019, Peter J. Denning 3

• Security has been a major concern in the design of OS since
the 1960s. Examples discussed in previous modules of this
book pervade the kernel:

– memory partitioning
– sensitive instructions and supervisor state
– file access controls
– Login protocols
– Protected service processes
– Protected entry points
– Capability addressing
– Sandboxes and confined domains

© 2019, Peter J. Denning 4

• There are more topics in security that have not been covered
in previous modules, but will be discussed in this module:

– authentication protocols
– digital signatures
– cryptographic communication protocols between servers
– public key certificates

• Other security topics not covered here:
– malware and hacker defenses
– security practices in the user community
– inference controls (in some database systems)
– data flow controls (in some military secure systems)

• Most security methods are integrated with
the OS
– Some like memory protection, process isolation,

and access controls permeate the design of the
kernel

– Others such as network access and web access
are implemented as protected service processes

© 2019, Peter J. Denning 5

Organization of this discussion
• Based on principle: separate policy from mechanism

– change rules without changing mechanism
– example: file access controls

• Three levels of mechanism
– the kernel of a machine’s OS and hardware
– a private network of mutually trusting computers
– the Internet: who or what can you trust?

© 2019, Peter J. Denning 6

© 2019, Peter J. Denning 7

Kernel -- Level 1

• Objectives:
– Control access to all regions of main and secondary memory
– Isolate processes (virtual machines) from each other
– Assure correct operation of all kernel functions

• Principles:
– Processes can only access memory objects or regions for which

they have been given explicit access.
– Default is no access (“least privilege”)
– Kernel functions invoked only by protected entry
– Protected service processes invoked via messages
– Untrusted software can be confined

© 2019, Peter J. Denning 8

Kernel -- Level 1

• Means to these objectives:
– Base-bound descriptors in registers or tables
– Page tables of virtual memory (logical partitioning)
– restrict sensitive instructions to supervisor state
– protected entry via interrupts
– protected IPC message system
– file access controls; copied into mapping tables
– every object access verified (“reference monitor”)

© 2019, Peter J. Denning 9

• Access matrix: model of a policy. (see ArtOS2 Ch 6.4, “Access Controls”)
– rows: protection domains (inhabited by processes)
– columns: objects (including domains)

• Reference monitor: every requested access checked by kernel; if it
conflicts with the policy, monitor throws protection violation interrupt.

• Access Control List (ACL) -- Implements access matrix by columns
– ACL associated with object, specifies allowed accesses for each domain

• Capability List (C-list) -- Implements access matrix by rows
– C-list associated with domain, specifies objects accessible in that domain

• In practice, use both: ACL info in directories is copied into kernel
mapping tables (C-lists), which map addresses and restrict access

© 2019, Peter J. Denning 10

• CPU contains a DOMAIN register pointing to the C-list,

used to map addresses to objects. DOMAIN register part

of CPU stateword.

– Generalizes the page-table pointer register

• When user logs in, the user’s shell process DOMAIN

register is initialized with the user’s default base domain.

– Shell’s domain inherited by all children processes

• Process can switch to another domain if the access matrix

permits it.

– Protected entry is the means to safely switch domains

– C-list contains an “enter capability” for the other domain

© 2019, Peter J. Denning 11

access matrix
(often stored as ACL’s in
directories)

C-list

page

CPU

DOMAIN

d

d

u d

login

U

login
protocol

initializing
the
C-list

initializing the
shell virtual
machine

© 2019, Peter J. Denning 12

Local Network -- Level 2

• A local (private) network consists of a collection of mutually trusting
computers (workstations, servers, desktops, smartphones, and other
devices)

• User joins the network with a login protocol as discussed next
• Computers interact with cryptographic protocols that allow them to

be continuously certain they are talking with computers they trust
– VPN (virtual private network) protocols
– Kerberos (an MIT system) protocols
– Secure web server protocols (e.g., https)
– Cryptographic protocols discussed later

• Computers in a local private network can be dispersed over a wide
geographic area and be mobile

© 2019, Peter J. Denning 13

Inside a Local Network

• File sharing is one of main benefits of local private network. Everyone
sees the same directories and files with a common name space,
typically URLs.

• Communications among the network’s computers are secured by
cryptographic protocols. Intruders unlikely.

• User authentication at login is the critical security issue. Attackers
search for accounts with weak authentication.

– password cracking
– password sniffing
– social engineering (tricking user into releasing private info)
– malware (Trojan horses)

© 2019, Peter J. Denning 14

u d p

login

U LOGIN PROTOCOL:
username: u
password: p’

Login allowed if u is listed
and p= typed password p’

User u is shown as owner of
initial shell, which operates in
domain d.

password file
(hidden file, in
the clear)

© 2019, Peter J. Denning 15

u d E(p)

login

U LOGIN PROTOCOL:
username: u
password: p’

NOT SAFE! THIS IS SAFER:

Breaks if password file revealed.

Solution: use one-way cipher E and store E(p).
Login allowed if E(p’) = E(p).

False sense of security: Unix /etc/passwd public!

E
text = “0”

key = p

E(p)

DES chip

password file
(hidden file, in
the clear)

© 2019, Peter J. Denning 16

One-way password still not safe
• Attacker does not have to search an astronomical

“password space” to find password matching E(p).
– The potential space for 12-letter passwords has 2612 = approx 254

passwords. Intractable if using brute-force search.

• BUT: users tend to select words in English =>
– High probability of cracking password upon guessing all words

from English dictionary (250,000 entries) – fast search
– Include common permutations such as reversal of name, two

copies of name, etc.

© 2019, Peter J. Denning 17

• Many studies have shown that a dictionary attack is
virtually certain to succeed on a one-way password file of
as few as 100 users. Takes at most a few hours.

• Many ways to thwart:
– Make password file inaccessible (authentication server)
– Insert delay between login attempts
– Disconnect after three unsuccessful login attempts
– Require caps, numbers, and punctuation in password
– Check proposed passwords with friendly password cracker
– Pass phrases

© 2019, Peter J. Denning 18

• All this is still not safe!
• Password sniffing: eavesdropper listens to ethernet or

other packet-carrying channel, locating packet sequences
from login protocol, and saving them.

• Cracker collects the sniffed passwords later and replays
them on the network. No guessing required.

• Solution: any computer that runs on the network has a
login client that enciphers usernames and passwords
before passing them on the network, for example to a
Kerberos authentication server.

What are safe ways to log in?

• Two-Factor Authentication: Augment
password with a direct “please confirm
attempted login” message to the user

• Login tokens
• Biometrics

© 2019, Peter J. Denning 19

Two-factor authentication

• Password plus “challenge-response”
– User types name and password
– Authentication server sends confirmation

request (challenge) to user’s previously
registered mobile phone

– Login allowed if password correct and user
responds positively to the challenge

• Immune to password attacks
© 2019, Peter J. Denning 20

© 2019, Peter J. Denning 21

Login tokens
• Key assumption about passwords: they are reusable.
• Therefore, dictionary attacks and sniffing can yield a useful

“harvest” of passwords that are still valid.
• Is there a way to eliminate reusability? -- That is, to

implement one-time passwords?

© 2019, Peter J. Denning 22

4237

E K

pass token

u d K

login

password file

username: u
password: 4237

Login validates if it also
computes 4237 from E(K,t),
where K is in the password file
and t is on the local clock.

© 2019, Peter J. Denning 23

• Number in the token window is the clock time enciphered
under a key stored within the token and assigned by the
system administrator. It changes once per minute.

• When login asks for password, user enters the number
then showing in the token window.

• System checks to see if the number is what it expects from
its knowledge of the time and the user’s key.

• Can also be used as second factor in two-factor
authentication: request user to provide number on token’s
display.

© 2019, Peter J. Denning 24

• Deal with clock drift by storing a drift factor a (initially 1)
in the password table for user U.

• Validate if E(K,a*t) matches what the user said is on the
pass token.

• If no match, check for match with t-1 (or t+1); if that
matches, reset a = (t-1)/t (or (t+1)/t).

• Can add keypad to pass token; user types PIN to the token
to activate it. Increases cost of token.

© 2019, Peter J. Denning 25

• Main problem is cost
– tokens typically around $5

– heavy administrative overhead in assigning tokens, recalling
tokens, and replacing lost or broken tokens

• Theft is not usually a problem; risk no worse than credit
card theft.

© 2019, Peter J. Denning 26

Biometrics
• Another way to log in without passwords
• Biometrics = some measurable characteristic unique to individual

– fingerprint, voiceprint, retinal print, face print
– signature
– keystrokes event recording
– geolocation

• Hardware to do these things cheap and ubiquitous.
• Benefit: hard to fool. (But not impossible – e.g., with replays or copies

of the biometric data.)
• Problem: can’t thwart identity theft by changing passwords or pass

tokens.

© 2019, Peter J. Denning 27

Internet -- Level 3
• Internet raises many new security problems
• Anonymity: Makes it very difficult to learn

– the physical location of a server or workstation
– the identity of a sender; easy for users to give fake names and return

addresses.

• Untraceable connections and chains of connections
• Obfuscating services
• Scale: any one of 1 billion users may access an object
• Openness: unlike a local private network, which is restricted

to authorized users, the Internet is open to all

© 2019, Peter J. Denning 28

• Strategy: Protect objects by enforcing access controls
locally (at the object) and validating the agent making the
access.

• Do this independent of the network routing used to
connect the agent to the object.

• Cryptographic end-to-end protocols are the methods of
choice. Protocols based on one or both of:

– Single key encryption: fast but limited to secrecy.

– Public key encryption: much slower but handles signatures and
authentication.

© 2019, Peter J. Denning 29

Single-Key Cryptography
• The two parties to a conversation are A (Alice) and B

(Bob). They are “partners” in the protocols.

• To hold secret conversation, first share a secret key K.

• A enciphers a message M with a function that depends on
the key: [M]K = E(K,M).

• B deciphers the message with a function that depends on
the key: M = D(K,[M]K)

• Eavesdropper who intercepts [M]K can’t decipher without
a brute-force search over all possible keys. Choose key
size to make this impossibly long.

© 2019, Peter J. Denning 30

EM

key K

[M]K

DES chip

D
[M]K

key K

M

DES chip

C (eavesdropper) can’t find M in a
reasonable time from [M]K. Knowledge of
the E and D chips doesn’t help.

Problem: how do A and B agree on a key K?

A B

C

© 2019, Peter J. Denning 31

• This form of cryptography is thousands of years old.

• Depends on a secure channel for sharing keys.

• Modern instance is the Data Encryption Standard (DES)
created around 1975.

– DES provides encryption of 64-bit blocks with a 56-bit key.

– DES streams the bits through a series of 16 rounds of shift
registers and “S boxes,” transforming them many times.

– DES chips can match data rates of fast local networks.

– DES is a good random number generator.

– DES is a good one-way function (as in passwords)

– DES is a good hash function (signatures, blockchains)

© 2019, Peter J. Denning 32

• Early concern was breaking DES with massively parallel
computer to guess keys. One such was built for $250,000
in 1998; it took about 24 hours per 56-bit key.

• Triple DES puts three DES chips in series with a feedback
loop to get the effect of 112-bit key. Breaking that size key
is well beyond a massively parallel computer.

• Internet concern: constructing a secure key exchange
channel.

© 2019, Peter J. Denning 33

Establishing Secure Channel
• Define Certification Authority (CA).
• CA has a private key KA associated with user A.
• KA known only to A and CA.
• A gets key KA upon registering with CA.
• As registered user, A can request CA to create a key K for a

session with B, and convince B that only A and B have the
key K.

© 2019, Peter J. Denning 34

CA

A B C •••

KA KB KC

CA must earn high trust

Compromising CA’s database
compromises entire network

© 2019, Peter J. Denning 35

CA

A B

1
KB

1: ["request session key for B"]KA

2: [[K, ["from A:",K]KB]KA

3: "request session", ["from A:",K]KB

2

3

Needham-Schroeder Protocol

© 2019, Peter J. Denning 36

CA

A B

1
KB

1: ["request session key for B"]KA
2: [[K, ["from A:",K]KB]KA
3: "request session", ["from A:",K]KB

2

3

ANALYSIS:

1: A requests CA to generate K;
no one else can say this.

2: CA sends back K and a special
certificate for B.

3: A retains K and forwards
certificate to B.

4: B opens certificate, see it's
from A and gets key K; only
CA could generate certificate.

© 2019, Peter J. Denning 37

CA

A B

1
KB

1: ["request session key for B"]KA
2: [[K,["from A:", K]KB]KA
3: "request session", ["from A:",K]KB

2

3

OTHER:

Omitting KA in step 1 enables
impostor of A to get K.

Omitting "from A" in step 2
deprives B of assurance A is
sending the request.

Omitting certificate from step 3
deprives B of certainty that only
A knows key K.

Add timestamps to prevent replay.

© 2019, Peter J. Denning 38

CA

A B

1
KB

1: ["request session key for B"]KA
2: [[K,["from A:", K]KB]KA
3: "request session", ["from A:",K]KB

2

3

MAJOR VULNERABILITY:

CA compromise compromises
entire network.

© 2019, Peter J. Denning 39

Public Key Cryptography
• Invented in 1975 by Whitfield Diffie and Martin Hellman.

• Two keys given to each individual A: public (PA) and secret (SA).

• Knowledge of SA gives no advantage to computing PA.

• SA recovers a message enciphered with PA: M = [[M]PA]SA

• PA recovers a message enciphered with SA: M = [[M]SA]PA

• Only A has SA; no one else can apply SA to a message

© 2019, Peter J. Denning 40

• First solid working version was invented by Rivest, Shamir, and Adleman in
1977 and is today called RSA encryption.

• It is based on choosing two large secret primes p and q (e.g., 200 digits
each) and setting n = pq.

• The secret key is (d,n) where d is an integer relatively prime to (p-1)(q-1).

• The public key is (e,n) chosen so ed=1 mod (p-1)(q-1).

• Encipherment of M is C = Me mod n .

• Decipherment of C is M = Cd mod n.

• No one has found a way to factor a composite number, like n, into its prime
factors in polynomial time. All known factoring algorithms are
exponentially hard. Unless you can factor n, you can't find d from the
public key.

RSA System

© 2019, Peter J. Denning 41

EM

key PB

[M]PB

PKC chip

E
[M]PB

key SB

M

PKC chip

Eavesdropper C cannot decipher
[M]PB since SB is the only way to
do that, SB is known only to B, and
C cannot compute SB from PB.

DATA RATE of PKC chip is
much less than DES chip – a
factor of 1000 or difference

A B

C

© 2019, Peter J. Denning 42

1a: Choose K
1b: A ® B: [K]PB
3: A ® B: [M]K

A chooses a DES session key K and
sends to B enciphered with B's
public key. After that they can use
DES to encipher all their messages.
C cannot eavesdrop because K is
known only to A and B.

2a: Decipher K
2b: B ® A: ack
4: decode [M]K ® M

Solution to Secure Key Channel Problem

C

A B

© 2019, Peter J. Denning 43

• PKC allows signatures, a new concept.
• [M]SA can be deciphered by anyone (with PA) but can only

be generated by A --
M = [[M]SA]PA

• Now secrecy and authentication are separate.
– Secrecy -- encipher with receiver’s public key
– Authentication -- encipher with sender’s secret key

• Can do both, as when A sends B --
[[M]SA]PB

only B could receive and only A can send.

Signatures

© 2019, Peter J. Denning 44

• The low bandwidth of PKC encoding works against signing
large documents.

• Interesting practical case: signing a document (e.g., email)
when secrecy is not a concern -- the document is public
but we want to be sure that everyone knows A signed it
and that A cannot repudiate signature.

• Make a digest of the entire document by mapping all bits
of the document through a hash function into a single
short bitstring -- e.g., 64 bits.

• A signs the digest and includes it with the document.

© 2019, Peter J. Denning 45

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

DES

key K = "0"

ÄXOR

out: 64 bits

hash box

out = 0
while blocks remain do {

block = next64(file)
out = DES (“0”, block Ä out) }

block: 64 bits

a document

© 2019, Peter J. Denning 46

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

hash
64-bit hash

h

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

signed, A

PKCkey = SA [h]SA

What A Does to Sign Document

© 2019, Peter J. Denning 47

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

hash

64-bit hash

k

signed, A

PKC

key = PA

[h]SA

What B Does to Verify Document Authenticity

same?

The system PGP (Phil
Zimmerman’s Pretty
Good Privacy) validates
email this way.

© 2019, Peter J. Denning 48

Public Key Certificates
• How are public keys distributed? Mechanism for doing

this called Public Key Infrastructure (PKI).
• What about white pages -- a public database contain

records of the form (A, PA)?
• White pages not safe.

– B can register entry (A, PB), thereby fooling others into using PB
rather than PA. (Now B can be an eavesdropper.)

– B can do this even if B needs to identify self at time of
registration, if the white pages administrator does not verify that
the public key belongs to B alone.

© 2019, Peter J. Denning 49

• Certification Authority (CA): issues certificates testifying
that PA is A's public key.

• To assure (A,PA) belongs to A, CA must identify A and either
– CA generates (PA,SA) keys (and discards copy of SA)
– A provides PA and answers a challenge by CA, e.g., supplies

["challenge string"]SA on demand by CA.

• Still not safe --
– database could be compromised by attackers who got CA's secret

key and could therefore replace certificates.

© 2019, Peter J. Denning 50

• Public Key Certificate: A digital object containing
– declaration “A’s public key is:”
– A’s public key PA
– PKC algorithm to be used
– issue timestamp Ti
– expiry timestamp Te
– CA's signature on hash checksum h of the above items

"A's public key is:", PA, RSA, Ti, Te, [h]SCA

© 2019, Peter J. Denning 51

NOTE:

Certificate says only: "Someone identifying
self as A was issued the public key PA,
signed CA."

Certificate does NOT say that the bearer
is A. If the bearer matters, the person
performing the transaction must check A's
identity.

Trust in the certificate depends on the
identification procedure used by CA and on
the subsequent verification process at time
certificate is used.

© 2019, Peter J. Denning 52

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

signed, A

[h]SA

With certificates, A can
include copy of its public
key certificate with the
document, so that any
recipient has the public

key when it need to verify
the document.

BEFORE

ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadum ipsum
sum veni saecula
saeculorum pluribus unum
ipsum quo vadem

signed, A
”A’s PK is:”,PA,RSA,Ti,Te,[h]SCA

[h]SA

NOW

© 2019, Peter J. Denning 53

NOTE ABOUT REPUDIATION:

Can A claim that A's secret key was
compromised and therefore that a
signed document is invalid?

Nothing prevents this -- e.g., A could
release SA after signing a document A
wishes to repudiate.

Signature puts burden of proof on A
to show that signature is not valid.
Decided by mediator or court.

Identity theft (someone steals SA)
can be a major problem.

© 2019, Peter J. Denning 54

PKI
• Public Key Infrastructure: set of protocols, clients, servers,

and processes to allow merchants to validate customers.
• PKI trust depends on:

– trust in the PK certificates (issued by the CA)
– trust in the per-transaction verification process

• Most PKI does not implement PTV as thoroughly as credit
card companies do and can be circumvented. (Recent
Microsoft case with VeriSign illustrates.)

Summary

• Security is a complex topic, of long concern to OS
designers

• Security considerations pervade the design of the
kernel and of service processes that communicate
with other computers, either privately or via
public Internet

• Cryptographic protocols are essential to establish
trust in communications between computers

© 2019, Peter J. Denning 55

