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A person with paper, pencil, eraser, and subject 
to strict discipline, is a universal machine. 

--Alan Turing 
Machines may be the true humanizing influence. 
They do the work that makes life possible; human 

beings do the things that make life worthwhile. 
--Isaac Asimov 

 
 
 

Computer scientists are fond of abstractions.  An abstraction is a mental model 
that captures the essential features of a thing and suppresses all other features.  
Computer scientists often describe programming as designing a hierarchy of 
abstractions represented as “abstract objects” operated on by designated 
functions.  This notion has become so popular that computer science is often 
touted as the field that has learned best how to manage abstractions. 

Computing abstractions differ in an important way from the mathematical 
abstractions common in other fields: computing abstractions perform actions.  
The terminology of abstractions often obscures the principle of stuff: the reality 
that computational actions are implemented as physical processes controlled by 
programs. 

Consider for instance a musical song.  On a computer, a song is represented 
by an MP3 file, which contains a digitized version of music from the publisher.  
To listen to the song, we activate a program “play” on the file.  The “play” 
program encodes the millions of bits from the file in disk storage as signals that 
travel to the earphones, where sound-generator circuits vibrate diaphragms.  At 
the abstract (user) level, the play program and the MP3 file appear as single 
objects: apply “play” to “song” and you hear music.  The implementation is quite 
complicated, involving many steps, each of which depends on a physical process. 

In this chapter, we examine how to organize physical machines that compute 
functions.  The allowable moves of the machine are expressed as single 
instructions, such as adding two numbers.  A program is a series of instructions 
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arranged in a precise way to cause the machine to evaluate the desired function.  
Instructions and data are encoded as binary patterns stored in a memory.  When 
fetched into a processor, instructions cause the hardware to transform input data 
into output data. 

In the earliest days of electronic computing, programmers wrote programs 
directly as binary codes arranged in sequences on paper tapes or cards.  
Programming languages quickly superseded binary coding because they were 
much less error prone.  A special program called a compiler automatically 
translated statements of the language into binary machine code.  In the next 
chapter, on programming, we discuss how a compiler does this. 

The organization of a computing machine is often called its architecture.1  An 
architectural specification covers the central processing unit (CPU), which 
executes instructions; the random-access memory (RAM), which contains the 
program code and the data,2 and the data structures used to organize program 
components in memory. 

Machines 
A machine is an apparatus for using or applying energy to perform a particular 
task.  Machines are usually powered by mechanical, chemical, thermal, or 
electrical means.  Electronic machines are powered by electricity with no moving 
parts -- for example, radio, television, mobile phones, and tablet computers. 

An automaton is a self-operating machine.  The cuckoo on a clock was once 
considered an automaton.  So was The Turk chess player of the late 1700s 
(Standage 2003) (see figure 1).  From the 1940s, computer scientists have thought 
of automata as abstract mathematical models of computers, and from the 1950s 
they believed automata embodied into software or robots have the potential for 
self-conscious thought. 

Machines to aid calculation date back thousands of years.  From 2700 BCE 
onward, merchants in Mesopotamia, Egypt, Persia, Greece, Rome, and China 
used the abacus to calculate sums.  The Greeks showed how to measure the 
height of a tree by measuring its shadow and taking ratios with the shadow of a 
stick of known height; the stick and its operating procedure were a simple 
computing device.  Another measuring stick, the slide rule, was invented around 
1620 after John Napier published the concept of a logarithm; often called a slip-
stick, the slide rule was a standard computing machine used by engineers until 
the 1970s, when the electronic calculator displaced it.  In 1642 Blaise Pascal built 
a computing machine that added and subtracted numbers, and he presented 
algorithms for multiplication and division as repeated additions or subtractions.  
Charles Babbage designed the Difference Engine (1822-1842) to compute 
numerical tables of arithmetic functions; existing tables, calculated tediously by 
hand, were riddled with errors and posed great risks to navigators and other 
users.  In 1911 the Marchant Company began selling mechanical calculators built 
from gears, pulleys, and levers that could add, subtract, multiply, and divide.  In 
1922, the German engineer Arthur Scherbius invented the Engima machine for 
generating ciphers; the Poles broke the code in 1932 and passed the information 
to the British, who used it to build the Bletchley code-breaking machine in the 
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early 1940s.  In the late 1920s Vannevar Bush built the differential analyzer to 
solve differential equations by mechanical integration. 

 
 
 

 
Figure 1.  In his 1784 book Inanimate Reason, Karl Gottlieb van Windisch 
described The Turk, a chess-playing machine.  Beginning in 1770 for the next 
84 years, its various owners promoted it as an automaton that would play chess 
with anyone, winning most matches.  It was an elaborate hoax.  An expert 
chess player hid inside the cabinet, observed the pieces with mirrors, and used 
levers to move his pieces on the board.  The illusion appealed to a deep human 
belief, perhaps a fear, that the human brain is a machine and most intelligent 
acts are actually mechanical moves.  In 1997 the chess computer IBM Big Blue 
beat grandmaster Garry Kasparov.  The reaction was not that the machine had 
become intelligent but rather that the machine searched faster than Kasparov. 

 
 
In World War II the US Army commissioned teams of women at Aberdeen 

Proving Grounds to calculate ballistic tables for artillery.  Gunners used the 
tables to determine the best gun direction and angle given the wind and range of 
the target.  Following programs written on paper, the women operated 
mechanical calculators (such as the Marchant machines) to prepare these ballistic 
tables.  Because the teams were error-prone and could not keep up with the 
volume of ballistic tables needed for the growing inventory of ordnance, the 
Army decided to replace the human calculators with electronic machines.  They 
commissioned the first computing machine project, the ENIAC, at the University 
of Pennsylvania in 1943.  The ENIAC could compute ballistic tables a thousand 
times faster than the human teams.  Although the machine was not ready until 
1946, after the war ended, the military made heavy use of computers after that. 

It is interesting to note that in the 1920s, the term “computer” meant a person 
who calculated numbers.  Thus, to distinguish them from actual, human 
computers, the first electronic computing machines were billed as “automatic 
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computers”.  The acronyms of the first electronic computers in the 1940s ended 
in “-AC” to signify this. 

In 1937 Alan Turing defined a computer as a machine capable of calculating a 
mathematical function, and he discovered functions that cannot be calculated by 
any computer.  He used the term computable for functions that could be 
calculated by computers.  A function is computable if there exists a finite set of 
instructions that can generate its output value for any given input value (see 
figure 2).  For example, addition is computable because we can specify a finite set 
of instructions that produce the sum x + y given any numbers x and y.  An 
unanswered mathematical question in Turing’s time was how we could describe 
the set of computable functions.  We examine this question more deeply in 
Chapter 6 on computation. 

 
 
 

 
Figure 2.  A computer is a machine that takes an input binary pattern X and 
calculates an output binary pattern Y.  The computer is controlled by 
instructions from a program designed to calculate a specific function F.  When 
a signal arrives on the “go” input, the computer starts to work and after a 
while stops with output Y = F(X).  The time required before the computer stops 
depends on the function and the program.   Some programs may contain 
infinite loops, in which cases the computer will never stop.  We can define a 
function H(F,X) that yields value 1 if program F halts for input X and 0 if it 
does not halt.  Alan Turing proved that H cannot be implemented by any 
computer. 

 
 
Turing argued that every computational method to calculate any computable 

function was based on the very simple operations of reading symbols, setting a 
control state depending what has been read, and writing symbols.  He created an 
abstract machine, now called a Turing machine, which consisted of a control unit 
moving along an infinite tape, reading and writing symbols in the squares of the 
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tape.  The specification of the control unit was the machine’s program.  Programs 
used loops to repeat steps as many times as needed.  He also described a 
universal machine capable of simulating any other Turing machine given its 
program.  And finally he showed the existence of functions that are well defined 
but not computable, such as the problem of determining whether a Turing 
machine will halt (come to a stop without going into an infinite loop).  Although 
several others in his day also produced designs for computational machines and 
demonstrated them equivalent to Turing machines, Turing’s design became the 
reference model because it most closely resembled the functions of real electronic 
computers, particularly the processor (control unit) and memory (tape). 

The definition of computer as a machine that transforms an input pattern into 
an output pattern and then stops is not the only mode for using computers.  
Interaction is common.  An interactive machine receives numerous inputs and 
generates numerous outputs and never stops.  We noted in chapter 3 that an 
interactive machine, in cooperation with a human, could compute functions that 
a stopping computer could not. 

Computing Machines 
A computer is a machine controlled by a program that computes an output value 
from a given input value.  Now we take a closer look at how we can build a 
machine that works this way. 

A stored-program computer is electronic hardware that implements an 
instruction set.  An instruction is a single arithmetic or logical operation carried 
out by the machine.  An operation is a very simple, elementary function.  Typical 
operations take two inputs and produce one output.  For example ADD sums 
two numbers and EQ compares whether two numbers are equal; thus 
ADD(3,5)=8 and EQ(3,5)=0 (false).  Instruction sets also contain branch 
instructions that control which instruction is next after the current one. 

A program is a set of instructions arranged in a pattern that causes the desired 
function to be calculated.  Programming is the art of designing a program and 
providing convincing evidence that the program computes its function correctly. 

A computing system is a combination of program and machine.  The program 
causes the machine to calculate a function.  We can also say that the computing 
system calculates a function. 

To make all this work, our computing system needs: 
1. Precise specification of the set of instructions implemented by the 

hardware. 
2. Precise method to represent a program as a series of instructions. 
3. A memory that stores the program and the data on which it operates. 
4. A control unit that reads and executes instructions of a program in the 

order prescribed by the program. 
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A CPU (central processing unit) is a hardware device that reads instructions 
from a program and executes them, one at a time, in the order prescribed by the 
program. 

A RAM (random access memory) is a hardware device that holds data values 
in locations that can be read or written by the CPU.  RAM is organized as a linear 
array of locations.  Each location holds an elemental quantity of data, typically an 
8-bit byte or a 32-bit word.  The locations are numbered 0,1,...,2n-1, where n is the 
number of bits in an address.  RAM is called “random access” because it can 
access any random location in the same amount of time.  Locations only hold 
only binary patterns (of 8 or 32 bits).  The RAM does not attempt to interpret 
patterns; it simply stores and retrieves them reliably.  The time required for the 
memory to respond to a CPU read or write request is the memory cycle time, today 
typically just a few nanoseconds.  A block diagram of the CPU and RAM is 
shown in figure 3, and one of the interface between CPU and RAM in figure 4. 

Real computers have memory other than RAM, for example a disk.  Disk 
access times are random variables, depending on seek and rotation delays of 
moving magnetic media.  The additional problems of moving data among 
multiple types of memory are considered in chapter 7 on memory. 

 
 
 
 
 

 
Figure 3.  The hardware of a computing system consists of a central processing 
unit (CPU) and a random access memory (RAM).  The program and its data are 
in the RAM.  The data are arranged as a stack, which means that new values 
are added only to the top of the stack and values are retrieved only from the 
top.  The CPU contains two special registers.  The instruction pointer (IP) is the 
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RAM address (in the program) of the next instruction to be executed.  The 
stack pointer is the RAM address of the top of the stack.  The CPU also 
contains an arithmetic-logic unit (ALU), which takes two input numbers (a and 
b) and produces one output number (c).  A series of start lines signals the ALU 
which operation to perform, for example, add, multiply, or test equality. 

 
The CPU uses the instruction pointer (IP) register to keep track of which 

instruction is next to execute.  It executes instructions of a program by repeating 
the following cycle until it comes to an exit instruction in the program: 

1. fetch instruction is addressed by IP and set IP=IP+1 
2. decode by reading the operation code contained in the instruction 
3. execute by carrying out the operation 
4. check for interrupts: error conditions that might have arisen during 

the previous steps 
 
 

 
Figure 4.  The CPU-RAM interface consists of several components.  The 
objective is to read or write a particular location (a) in the RAM; a read 
operation transmits the value v in the selected location to the CPU, and a write 
operation transmits a new value from the CPU to the selected location.  The 
memory address register (MA) tells which location is selected.   The memory 
data register (MD) holds the value.  The read signal line tells the memory 
hardware to select an address (in MA) and copy its value to the CPU (in MD).  
The write signal line tells the memory hardware to copy the value from the 
CPU (in MD) to the location selected (by MA).  The time required to do these 
operations is called the memory cycle time, under 10 nanoseconds in modern 
RAMs. 
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The CPU contains a clock that issues a signal once every clock tick.  The clock 

signal propagates through the CPU and activates selected circuits.  A typical 
clock tick interval is around 0.5 nanosecond.  It takes four ticks to sequence the 
CPU through the four steps of an instruction cycle.  The length of the clock tick 
interval is chosen to allow all the circuits involved in a step of the instruction 
cycle to settle into a new state.  If the clock tick is too short, some circuits will not 
have had time to settle and the CPU will malfunction.  Figure 5 illustrates how 
the CPU decodes and executes instructions, and figure 6 illustrates how the ADD 
component of the CPU’s Arithmetic-Logic Unit (ALU) works. 

 

 
Figure 5.  CPU instruction cycle consists of four phases (a).  At each clock tick, 
the CPU advances to the next phase.  The first phase gets a copy of the current 
instruction from address IP (instruction pointer) in RAM and sets IP to the 
next instruction.  The second phase takes the operation code bits from the 
current instruction and interrogates a local control memory to get a control 
word for that instruction.  In this example the control word is broken in three 
eight-bit blocks, corresponding to three subticks that occur between two 
regular clock ticks.  We designate bits by their block and position; thus, bit 1.1 
is bit 1 of the first block.  At a subtick, each of the eight bits in a control word 
block activates a logic circuit; up to eight things can happen in parallel.  The 
first five example instructions assume that the two operands are in registers R1 
and R2.   Bit 1.1 copies R1 to the “a” input of the ALU, and bit 1.2 copies R2 to 
the “b” input of the ALU.  The first five bits of the second block send an 
appropriate trigger signal to the ALU telling it to add (2.1), subtract (2.2), 
multiply (2.3), divide (2.4), or test-for-equal (2.5).  The first bit of the third 
block (3.1) copies the ALU output to register R1.  The other three instructions 
activate different paths.  LOAD ADDR activates 1.3, which says “copy the 
address bits from the instruction word to R1”.  LOAD activates 1.4, 2.6, and 3.2, 
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which say: “copy R1 to MA (memory address register)”, “activate memory 
read”, and “copy the MD (memory data) to R1”.   Finally, the STORE 
instruction assumes R1 contains an address and R2 a value; it activates 1.4 and 
1.5 in parallel and then 2.7, meaning: “copy R1 to MA”, “copy R2 to MD”, 
“activate memory write”. 

 
 

 
Figure 6.  To add numbers, we follow a simple algorithm that sums the 1s 
digits, then the 10s digits, then the 100s digits, and so on, and occasionally 
transfers a carry of 1 to the next higher stage if a digit sum is bigger than 9.  For 
example, to add 17 and 26, we start by adding the 1s digits 7 and 6, giving a 
sum digit 3 with carry 1.  Then we add the 10s digits 1 and 2 plus the carry, 
giving a sum digit 4 with carry 0.  The answer is 43.  The same algorithm 
simplifies for the binary number system because sums can be only 0 or 1.  The 
figure depicts a three-bit binary adder (left).  The inputs are numbers a and b, 
and output is number c.  The carry transfers (co = carry out, ci = carry in) from 
one stage to the next higher.  The right stage sums the 1s bit, the next stage the 
2s bits, and the third stage the 4s bits. Some bit combinations produce a carry; 
for example 1+1 = 0 with carry 1.  The table (right) shows the output 
combinations of a stage for all possible input combinations.  We use the carry 
from the leftmost stage (co) as a fourth bit of the output because some sums 
are greater than 7 (the largest number that can be represented in three bits).  
The largest sum would be 111 (=7) + 111 (=7) or 1110 (=14).  Each stage is 
implemented with a few transistors.  The sum is available as soon as all the 
stages settle; the worst-case settling time occurs when a carry propagates the 
entire length of the chain.  The same structure is used for larger numbers; thus, 
a 32-bit machine represents numbers with 32 bits and uses 32-stage adders.  In 
most computers the adder is a component of a larger arithmetic logic unit 
(ALU) that performs add, subtract, multiply, divide, and logical test operations 
such as equal, not equal, or less than. 
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The conclusion from this brief introduction is that we can design electronic 

circuits that will cause a machine to calculate a function by executing a sequence 
of instructions.  The design outlined here was created for the first electronic 
computing machines in the 1940s -- at the University of Pennsylvania, MIT, 
Princeton, and Cambridge.  John von Neumann, a mathematician working with 
some of the engineers, wrote up descriptions of the design.  Because of his 
writings, the design is often called “von Neumann architecture”, although the 
design was actually invented by the engineers J Presper Eckert, John Mauchly, 
Hermann Goldstein, Arthur Burks, and others. 

Many other architectures are possible for computers.  The common feature is 
that they completely automate the process of following programs of instructions 
to calculate functions. 

Programs and Their Representations 
The previous discussion might give the impression that a program is any 
sequence of instructions from the machine’s instruction set.   That is not so.  
Programs have to obey precise rules of structure.   There can be absolutely no 
ambiguity about what each individual instruction does and what the whole 
pattern does.  Otherwise, we could not attain reliable computers that give the 
same answer for the same input every time. 

Let us outline a design for programs.  Generally when we calculate numbers 
we do three kinds of things:3 

1. Perform instructions in a strict sequential order (sequencing); 
2. Make a choice between two alternative calculations based on the 

outcome, true or false, of a test (choice). 
3. Repeat a calculation many times until a test says to stop (iteration). 

Notice that the iteration pattern opens the possibility of an infinite loop because 
the test might never be satisfied. 

A programming language is a set of syntax rules describing a precise notation 
for each of the above structures.  There are thousands of programming 
languages.  Despite the diversity of possible computer languages, they all have a 
single purpose: to describe how a computing machine can be made to evaluate a 
specific function. 

When we design programs, we think of a pointer moving through the 
program steps and the machine doing each designated instruction, one at a time.  
The pointer is called the instruction pointer (IP).  The CPU implements the IP as 
a register containing the address of the RAM location of the next instruction to be 
executed (see figure 3).  When we are done with an instruction, we normally go 
to the next instruction in sequence (IP+1) unless a control instruction redirects IP.  
For example, an instruction “GO 17” sets the IP to 17 so that the CPU next 
executes the instruction at memory location 17. 
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The next step in our story about machines that execute programs is to show 
how to design an instruction set that supports any program conforming to the 
three-part structure above.   That is the subject of the next section. 

Stack Machine: A Simple Model of a Computer System 
For a thousand years students of algebra have been told that arithmetic operators 
have orders of precedence: all multiplications and divisions are done before 
additions and subtractions.  A series of operators of the same order are evaluated 
left to right.  These rules ensure that all expressions evaluate the same, no matter 
who does the evaluation.  For example, 1+2*6/4-2 would be evaluated by 
applying operators one at a time starting with the highest precedence: 

1+2*6/4-2 
1+12/4-2 
1+3-2 
4-2 
2 

More advanced students also learned that there is a third precedence level, 
exponents and logarithms, which are performed before multiplications and 
divisions. 

Students of algebra are also taught that algebraic terms can be grouped 
within parentheses to force groupings not implied by the rules of precedence.  
For example, grouping the last two terms in the previous expression results in a 
different outcome: 

1+2*6/(4-2) 
1+12/(4-2) 
1+12/2 
1+6 
7 
In 1920 Polish logician Jan Lukasiewicz invented a new notation, now called 

Reverse Polish notation (RPN), which followed the rules of precedence and 
avoided parentheses.4   The idea was to follow two numbers by the operator that 
combines them in the expression.  In his notation the two expressions above 
respectively become 

1 2 6 * 4 / + 2 – 
1 2 6 * 4 2 - / + 
Early in the days of computer science someone noticed that Polish notation 

expressions could be evaluated on a stack.  A stack is a last-in-first-out memory 
structure.  You read the Polish expression from left to right, pushing numbers on 
the stack as you encounter them; and you perform operators on the top two 
numbers, replacing them with the result.  For example, the series of stack 
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configurations for the first expression is as follows (with top of stack on the 
right): 

1 (Push 1 onto the stack.) 
1 2 (Push 2 onto the stack.) 
1 2 6 (Push 6 onto the stack.) 
1 12 (Pop 2 and 6, multiply them, then push product 12.) 
1 12 4 (Push 4 onto the stack.) 
1 3 (Pop 12 and 4, divide 12 by 4, then push quotient 3.) 
4 (Pop 1 and 3, add them, then push sum 4.) 
4 2 (Push 2 onto the stack.) 
2 (Pop 4 and 2, subtract, then push difference 2.) 
The Burroughs B5000 machine (1961) organized its memory around a stack 

and achieved a highly efficient method of evaluating expressions (Organick 
1973).  The English Electric KDF9 (1963) used a stack structure.  The Hewlett 
Packard scientific calculator HP-67 (1972) used the same structure because it 
reduced keystrokes and errors when evaluating complicated expressions.  
Modern HP calculators continue to use the stack structure.  Numerous 
programming languages, beginning with Algol (1958), were designed on the 
assumption that the underlying machine had a stack memory.  Modern 
multicore computing chips use stack memory for subroutine calls.  Modern 
compilers use CPU machine registers to simulate pushdown stacks for 
evaluating expressions.  The stack memory structure is ubiquitous. 

Table 1 is an instruction set for a CPU-RAM configuration as depicted earlier 
in figure 3.  The “Op Code” is an abbreviation for the name of the instruction.  
The effect of executing the instruction is shown in the “Before” and “After” 
columns, which show the stack configuration just before and just after the 
instruction is executed.  The letter “S” represents the state of the stack prior to the 
current instruction.  Mem[a] means the contents stored in memory location a.  
Essential side effects of changing the instruction pointer and changing the 
contents of a memory location are shown in the “Memory Effects” column. 

 
Table 1: Instruction Set of Stack Machine 

Type Op Code Name Before After Memory Effects 

Arithmetic 
and logical 
operators 

ADD 

SUB 

MUL 

DIV 

EQ 

NE 

Add 

Subtract 

Multiply 

Divide 

Test for equal 

Test for not equal 

S a b S c  
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Memory 
interface 

LA a 

L 

ST 

Load address a 

Load 

Store 

S 

S a 

S a v 

S a 

S v 

S 

 

v = Mem[a] 

leaving Mem[a]=v 

Sequencing  GO 

GOF 

Go 

Go on false 

S a 

S a v 

S 

S 

leaving IP=a 

leaving IP=a if v=0 

Completion EXIT Exit empty empty  

 
Figure 7 is an example of a program in this instruction set evaluating an 

assignment statement that sets a variable X to the value of an expression. 
 

 
Figure 7.  This series of snapshots shows the stack as it executes a program 
implementing the statement X=A*(B+C) when A=4, B=3, and C=2; when the 
program is done, memory location X=20 and the stack is empty. 

 
 

Procedures and Exceptions 
The machine’s instruction set contains instructions that control the sequencing of 
the CPU as it moves through a program.  Programs in higher-level languages 
require more sophisticated sequencing control because they allow programmers 
to write their own functions beyond those in the instruction set and to write 
functions that deal with errors and other events requiring special attention.  The 
basic structure for both cases is the procedure call and return mechanism.  The 
purpose of the procedure mechanism is to transfer the CPU to the first 
instruction of another program and, when the called program is done, to return 
the CPU to its calling point. 

The designers of the first stored program computers realized that 
programmers would want to add functions of their own design, implemented as 
new subprograms that can be invoked with the same ease as machine 
instructions.  A subprogram mechanism allows a programmer to call a 
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subprogram from wherever it is needed rather than rewrite its code at that point 
in the program.  It also allows experts to create libraries of standard functions, 
such as trigonometry or algebra, which can be used reliably by anyone else. 

Originally, in the 1950s, reusable subprograms were called subroutines.  That 
name eventually gave way to “procedure” in the 1960s under the influence of the 
Algol language.  A procedure is a subprogram that implements a single, usually 
simple, function. 

The key idea of procedures is that a procedure is “active” only between the 
moment it is called and the moment it returns, and the data it needs while active 
are in a private segment of memory called an activation record (AR).  A call 
allocates memory for the procedure’s activation record, and a return reclaims it.  
When procedure calls are nested -- meaning that an active procedure can call 
another procedure, including itself -- there will be multiple activation records, 
one for each call.   They will be linked together in the order of call, so that when 
one returns, its caller can resume from where it made the call (see figure 8.)  
Because returns occur in reverse order of calls, activation records are pushed on 
the normal stack on calls and deleted on returns (see figure 9.) 

 

 
Figure 8.  Programming languages accommodate procedures (separate 
subprograms) implementing functions.  The MAIN program is treated as a 
procedure called by the operating system.  In this example the MAIN program 
has called procedure F, then F called itself, and then the second F called G.  
While procedure G is active and executing, procedures MAIN and both calls to 
F are active but suspended.  The right arrows represent the call actions and 
passing of parameters; for example, MAIN called F with parameter X.  The left 
arrows represent the returns of values; for example the value Y=F(X).  Each 
procedure is implemented with a code segment and a data segment.  The 
dashed arrows represent links to the procedure’s code.   When a procedure F 
calls itself, each instance gets its own data segment, and all instances link to 
the same code segment for F.  The data segment is implemented as an 
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activation record that contains the saved instruction pointer (IP), the 
parameters of the call, local variables used only by the procedure, and a stack 
area used only by the procedure.  The saved IP belongs to the caller; for 
example, the instruction at address 372 in the MAIN code segment called F, 
and when F is done the CPU instruction pointer is restored to 372.  Because 
procedure activations are not known until a program is executed, the storage 
for activation records must be handled dynamically.  A stack can be used for 
this purpose because deactivations (returns) occur in reverse order from 
activations (calls). 

 
 
 
 

 
Figure 9.  With a few modifications of the CPU, the activation records of an 
executing program (as in figure 8) can be stored on the program’s stack.  
Procedure call pushes an activation record for the called procedure on top of 
the stack, and return pops it from the stack.  The register AR points to the 
beginning of the current activation record.  Just prior to the call, the caller code 
builds the new AR on the stack by loading values of parameters and local 
variables on the stack.  At the call, the IP and AR registers are diverted to the 
called procedure, and their former values are restored at the return.  Inside the 
called procedure, parameters and local values are found relative to the base of 
the activation record; for example, the first parameter is at address AR+3.  The 
caller resumes with the value computed by the called procedure on top of the 
stack. 
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Consider an example of a call on the function LOG(Y).  The purpose of the 
procedure call is to execute the code that computes log2Y and leave the result on 
top of the stack.  To do this, the CALL instruction diverts the CPU to the code for 
LOG.   The LOG code computes the result and places it in the reserved slot at the 
start of the AR.  When the LOG code finishes, it executes a RET (return) 
instruction, which resumes the CPU at the next instruction after its CALL.  These 
five steps give more details of how this happens: 

1. The caller builds a new activation record for LOG in accordance with 
the LOG AR template.  The template reserves one slot for the 
parameter (Y) and two slots for internal local variables.  This is 
accomplished by a series of k=6 load operations to fill in those slots. 

2. The caller places the target address for LOG on top of the stack.  At 
this point, the base of the new activation record is precisely k slots 
below the stack pointer; in other words the new AR base is to be SP-k. 

3. The caller executes the instruction CALL k, which does all of the 
following: save IP and AR registers in their reserved slots (at addresses 
SP-k+1 and SP-k+2, respectively), set register AR = SP-k, and pop the 
top of stack into register IP. 

4. Now the CPU executes the code of the LOG function.  That code will 
find the value of the parameter Y at location AR+3, and the two 
internal variables at AR+4 and AR+5.  The code saves the computed 
value of LOG(Y) into the slot served for the return value, which is at 
address AR. 

5. The called procedure executes the RET instruction, which sets SP to 
AR and restores the values of IP and AR from their saved locations.   
Now the caller resumes executing instructions after its call and the 
value of LOG(Y) is on top of the stack. 

The procedure architecture described above allows recursive procedures, 
which are programs that can call themselves.5  Lisp and Algol, first specified in 
1958, were the first programming languages to incorporate recursion.  Their 
designers did this because they wanted a language capable of expressing and 
executing any algorithm.  Lisp expressed algorithms using Church’s lambda 
calculus, and Algol expressed them with procedure notation consistent with 
recursive functions.  Around 1960, Edsger Dijkstra proposed organizing the 
memory as a stack and built the first working Algol compiler.  By comparison, 
Lisp compilers were much more difficult; it was not until the 1970s that efficient 
ones were available.  Many programming languages since that time have 
provided for recursive procedures. 

The procedure architecture turned out to be immensely useful not just for 
programming functions but also for dealing with errors during computations.  
For instance, what happens if a program attempts to divide by zero?  
Mathematically the result is undefined, and the program cannot give an answer.  
Rather than allow an undefined value to propagate through the program, CPU 
designers built the arithmetic-logic unit (ALU) to signal when this error 
condition occurs.  They modified the CPU instruction cycle to check for this 
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signal; it is the fourth step of the instruction cycle described a few pages back.  If 
the “divide by zero” error condition was set, the CPU used a procedure call to 
divert to a special subprogram that would either remove the error or abort the 
program.  The action of diverting the CPU to the error handler was called an 
“interrupt.”   Elliott Organick (1973) characterized an interrupt as an 
“unexpected procedure call.” 

A divide-by-zero error is not the only reason for interrupting the CPU.  
Designers used the words exceptional condition for any event that requires 
immediate attention from the CPU.  Exceptional conditions can be of two kinds: 
errors and external signals.  An error is a condition in a program that would 
cause incorrect or undefined behavior.  Examples of errors that can be detected 
by sensors in the CPU are divide-by-zero, arithmetic overflow and underflow, 
page fault, protection violation, or array reference out of bounds.  An external 
signal indicates that a high-priority event has occurred.  Examples of external 
signals are timer alarm, disk completion, mouse click, or network packet arrival.   
For any exception, the CPU is interrupted from whatever it was doing and put to 
work on dealing with the error or responding to the external signal.  With the 
addition of an “interrupt vector”, the CPU can automatically and rapidly invoke 
interrupt handler procedure k when the sensors report that exception k has 
occurred (see figure 10.) 

 

 
Figure 10.  An interrupt mechanism enables the CPU to interrupt the current 
task and execute a procedure (handler) that resolves an error or responds to a 
high-priority external signal.  Sensor circuits in the CPU and elsewhere in the 
computer system detect when any exceptions exist.  A selector circuit selects 
the exception of highest priority and outputs its number (or 0 if there is no 
exception).  At the end of each instruction cycle the CPU checks for exceptions, 
and, if there is one, the CPU suspends normal instruction execution.  Instead it 
uses the exception number (here number 3) to index an interrupt vector, which 
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is a list of entry-point addresses for each of the handlers, and makes a 
procedure call (here on h3).  The AR (here for h3) is pushed on the stack and 
the normal instruction cycle resumes.   When the handler is done, its return 
instruction restores the interrupted program, which continues from where it 
was interrupted. 

 
 

Choice Uncertainty 
The interrupt mechanism opens the door to metastability, a subtle and potentially 
devastating error.  What happens when an exception signal occurs at the same 
time the CPU is trying to read the flipflop that records the signal?  The clock 
controls when the CPU looks for interrupts, but not when the external signal 
arrives. 

Here is what happens.  Suppose the circuits use 3 volts to represent 0 and 5 
volts to represent 1.  The arrival of the external signal triggers the interrupt 
flipflop to transition from the 0 to the 1 state, meaning that the flipflop’s output 
voltage changes from 3 to 5 volts.  Because that transition takes time, there is a 
small interval where the voltage is in between 3 and 5 volts but not close enough 
to either be reliably counted as 0 or 1.  Electronics engineers call such an output a 
“half signal”.  A half-signal input can cause a flipflop to enter a metastable state 
with the output voltage poised midway between the two stable states.  That 
midpoint is like a ball poised perfectly on the peak of a roof: it can sit there for an 
unknown amount of time until air molecules or roof vibrations cause it to lose its 
balance. 

Metastability creates a risk of malfunction of any circuit that reads the 
flipflop’s output.  If the half signal persists beyond the next clock tick, the next 
circuit will receive an input that cannot be interpreted as 0 or 1, and its behavior 
may be unpredictable. 

The metastability problem was well known to hardware engineers.  Chaney 
and Molnor (1973) and Kinniment and Woods (1976) describe experiments to 
measure the likelihood and duration of metastable events.  By synchronizing 
clock frequency with external signal frequency, they attempted to induce a 
metastable event on every external signal change.  They saw frequent metastable 
events on their oscilloscope, some of which persisted 5, 10, or even 20 clock 
intervals (see figure 11.)  Other engineers had known for a long time that chooser 
circuits, also known as arbiters because their job was to arbitrarily choose one of 
two simultaneous signals, were hard to build (Seitz 1980, Denning 1985, Ginosar 
2003). 

Since that time, chip makers have been concerned about the chances of 
metastable states in their circuits.  Sutherland and Ebergen (2002) reported that 
contemporary flipflops switched in about 100 picoseconds (100 x 10-12 sec) and 
that a metastable state lasting 400 picoseconds or more occurred once every 10 
hours of operation.  Xilinx.com, a chip maker, reported that its modern flipflops 
had essentially no chance of showing a metastable state when clock frequencies 
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were 200 MHz or less, but faster clocks incurred metastable events (Alfke 2005).  
In experiments with interrupt signals arriving 50 million times a second, they 
observed a metastable state about once a minute at clock frequency 300 MHz and 
about once every 2 milliseconds at clock frequency 400 MHz.  In a computer 
system generating 500 interrupts per second, about 1/100,000 of their 
experimental rate, these extrapolate to one interrupt-caused metastable state 
about every 2 weeks at 300 MHz, and about every 3 minutes at 400 MHz. 

 

 
Figure 11.   An experimental setup enables observing flipflop (FF) 
metastability.  Each clock pulse signal triggers the FF state to match the 
input signal.  If the input signal is changing when the clock pulse arrives 
(dashed external line), FF may enter an indefinite state that lasts several 
clock intervals (dashed output lines).  In a digital computer, the indefinite 
output becomes the input of other logic circuits at the next clock pulse, 
causing half-signal malfunctions. 
 
 
Now you can see the problem.  There is a chance that the interrupt flipflop is 

metastable at the time when the CPU asks for the state, and that throws the next 
bank of flipflops controlling the CPU cycle into a metastable state.  If those 
flipflops have not settled down by the next clock tick, the behavior of the CPU is 
unpredictable.  The experimental results show that there is a good chance this 
can happen. 

This problem plagued many early computer systems.  Before engineers 
understood it, all they would see was that at random times the CPU would stop.  
They described these mysterious freezes as “cosmic ray crashes” because they 
seemed to be random disruptions of transistor function.  Only a full-power-off 
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reboot would restart the CPU.  Because they could occur every few hours or 
days, these freezes could be quite troublesome. 

Around 1970 David Wheeler, a hardware engineer at the Computing 
Laboratory of the University of Cambridge, UK, discovered the reason for these 
mysterious freezes: half signals appearing at the output of the interrupt flipflop.  
He designed a new kind of flipflop, which he called a threshold flipflop, and a 
protocol for using it that eliminated the danger of CPU freeze on interrogating 
the interrupt flipflop (see figure 12.) 
 

 

 
Figure 12.  The threshold flipflop (TFF) guarantees that the CPU’s interrupt 
input (“int”) will be stable when interrogated at the end of an instruction 
cycle.  When the CPU asks for the value of the external interrupt signal 
(“int?”), it triggers the TFF to record the current external signal in its state, 
and it turns the clock off.  As soon as its state returns to “0” or “1”, the TFF 
sends a pulse on the T output, which turns the clock back on.  The clock 
suspension is only as long as necessary to assure that TFF is again stable.  
David Wheeler proposed the idea of temporarily shutting off the clock 
when checking interrupts in the Cambridge CAP computer in the 1970s. 
 
 
 
Situations like the interrupt flipflop confront hardware engineers in many 

other parts of a computer.  Circuits that must choose between near-simultaneous 
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events are everywhere.  For example, at the same time, two CPUs access the 
same memory location, two transactions lock the same record of a database, two 
computers broadcast on Ethernet, two packets arrive together at the network 
card, an autonomous agent receives two requests, or a robot subsystem perceives 
two alternatives at the same time.  In all these cases if we demand that a decision 
be made between the choices by the next clock tick, there is still a chance that the 
chooser circuits have not settled.  If we want to wait for the circuits to settle, we 
need to stop the clock. 

We can summarize these findings about chooser circuits with the choice 
uncertainty principle: “No choice between near-simultaneous events can be 
made unambiguously within a preset deadline”6  (Lamport 1984, Denning 2007).  
The source of the uncertainty is the metastable state that can be induced in the 
chooser by conflicting forces generated when two distinct signals change at the 
same time.7 

Choice uncertainty is not about how a system reacts to an observer but how 
an observer reacts to a system.  It also applies to choices we humans make.  What 
happens when the options are presented together and we are given a short time 
to choose?  Sometimes we are still in indecision when the deadline comes, and 
we lose the opportunity presented to us.  We do not have the option, as did 
Wheeler, to turn off the clock until we can decide.  Individuals and groups can 
persist in an indecisive state for seconds, hours, days, months, or even years. 

The possibility of indefinite indecision is often attributed to the fourteenth-
century philosopher Jean Buridan, who described the paradox of the hungry dog 
that, being placed midway between two equal portions of food, starved 
(Lamport 1984, Denning 1985).  If he were discussing this today with cognitive 
scientists, Buridan might say that the brain can be immobilized in a metastable 
state when presented with equally attractive alternatives. 

Conclusions 
Our purpose has been to show, in convincing detail, that it is possible to build an 
electronic machine that will calculate any function for which someone can find a 
computational method.  The machine consists of a processor (CPU) and memory 
(RAM).  In a repeating instruction cycle, the processor executes a sequence of 
machine instructions stored in RAM, operating on data also stored in RAM.  The 
machine instructions implement simple operations including arithmetic, memory 
read and write, and control sequencing.  Each instruction is implemented by a 
circuit in the CPU.  We showed how to design a simple instruction set for the 
case where the data part of RAM is organized as a stack.  Instructions for basic 
operations, choices, and iterations give the machine universal computing power. 

The procedure-calling mechanism permits separately written programs to be 
invoked as procedure calls at any point within any program.  On detecting 
exceptional conditions, operating systems use the procedure mechanism to 
interrupt programs. 

We concluded with the choice uncertainty problem, which is that chooser 
circuits may be thrown into a metastable state by simultaneous inputs and be 
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unable to make a choice by a deadline such as the next clock tick.  The problem 
arises from the physics of circuits and can be avoided if the clock is turned off 
until the circuits settle. 

The study of machines reemphasizes the central importance of physical 
“stuff” in computation.  All the instructions and data of a machine are recorded 
as patterns of 0 and 1 in physical circuits and media.  The 0 and 1 are the names 
of states of the media.  Instructions manipulate these stored states in precise, 
prescribed ways.  Programs record the steps of computational methods as series 
of instructions arranged in precise patterns.  The machine reads the program 
instructions and carries them out on the data.   All this is done automatically.  
The circuits simply obey laws of electricity and physics; they have no 
understanding of the meanings of the signals passing through them. 

The stack structure cited here is only one of several models for executing 
programs.  Each model has its own rules and machine structures.  But they all do 
the same thing: control electronic circuits that calculate output values from input 
values. 
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End Notes 
                                                
1 The book by Hennessey and Patterson (2011) has excellent coverage of all aspects of computer architecture.  
The original architecture of the stored program computer is frequently attributed to John von Neumann 
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(1993), who published notes of his meetings with Eckert, Mauchly, Burks, and Goldstine.  Most of that 
architecture came from Eckert and Mauchly, not from von Neumann. 
2 IBM may have been the first to describe memory access as “random” with its new disk storage system 
RAMAC (Random Access Memory Accounting Machine) in 1956.  Random meant that the time to complete 
an access was a random variable composed of seek time (arm positioning) and latency (rotational 
positioning).  Today RAM refers to the main memory of a computer chip, but random means that the access 
time for any randomly chosen address is fixed, a different use of the word “random”. 
3 Corrado Bohm and Giuseppe Jacopini (1966) proved that any computable function can be computed by a 
program limited to these three structures.  This theorem was used as the basis of “structured 
programming”, a movement to make programs easier to understand and prove correct.  Some years later, 
David Harel (1980) traced this claim all the way back to the design of the von Neumann architecture itself 
and to a normal-form theorem proved by Stephen Kleene in the 1930s. 
4 Arthur Burks, Don Warren, and Jesse Wright (1954) are credited with being the first to notice that reverse 
Polish notation simplified mechanical evaluation of expressions.  Fritz Bauer and Edsger Dijkstra are 
credited with independently discovering this in the early 1960s (Wikipedia). 
5 Recursion can lead to simpler programs.  For example, it is possible to write a sort routine in the form 
SORT(list) = {SORT(left half of list); SORT(right half of list); MERGE(left half, right half)}, with the boundary 
condition SORT(empty list)=empty list.  Each inner call to SORT must have a smaller input than the outer 
call. 
6 There is a superficial similarity with the Heisenberg uncertainty principle of quantum physics.  That 
principle says that product of the standard deviations of position and momentum is at least 10-34 joule-
seconds.  Trying to reduce the uncertainty of one forces greater uncertainty of the other.  Part of the reason 
for the Heisenberg principle is that the very act of observing either adds or removes energy from the particle 
being observed.  But this only holds only at atomic scales of electrons and not at the macro scales of currents 
in wires.  The choice uncertainty principle is not an instance of Heisenberg’s principle. 
7 Asynchronous circuits (see chapter 8, Parallelism) are made of modules that interact with ready-
acknowledge signals. They can be designed so that they will not generate ready or acknowledge signals 
while in a metastable state.  They need no clocks.  They are often faster than clocked circuits because 
modules “fire when ready” and do not have to wait for a next clock tick. 


