
Contour Model for procedure
activation

Peter J. Denning

© 2019, Peter J. Denning

Contour Model

• Language independent model of structure
of programs composed of multiple
procedures

• Invented by Johnny Johnston in 1971

© 2019, Peter J. Denning 2

© 2019, Peter J. Denning 3

Definition

• Contour: an executable subprogram with
instructions, parameters, local variables, and
private working store.

• Name comes from a diagramming method in
which subprograms depicted as contours on a
topological map.

© 2019, Peter J. Denning 4

MAIN

A B

C D

MAIN program declares two sub-programs A and B.
A declares two more sub-programs C and D.

B declares one more sub-program E.

E

© 2019, Peter J. Denning 5

MAIN

A B

C D

CONTOUR TREE

Contour diagram corresponds to
tree of enclosures.

ENVIRONMENT of a contour = path
from the node back to the root

e.g.,

E(C) = (C, A, MAIN)
E(A) = (A, MAIN)
E(B) =(B, MAIN)

Block level = distance from root

E

LEVELS

0

1

2

© 2019, Peter J. Denning 6

• Contours are a model for block structure in some
programming languages

• Contours are a model for type inheritance in
object-oriented languages

© 2019, Peter J. Denning 7

Block Levels
• Block level of a contour or a variable is the level at which

the name is declared.
– Level of MAIN: 0

– Level of variable x of MAIN: 0

– Level of A and B: 1

– Level of variable y of A: 1

– Level of C, D, and E: 2

– Higher block level numbers are deeper in the contour tree

© 2019, Peter J. Denning 8

Execution Sequences
• (C, …) denotes period of invocation of contour C
• “(C” is the moment of call, “)” the return
• Two contour calls are either independent or one

embedded in the other (no overlapping)
– (C1, …) … (C2, …)
– (C1, … (C2, …) …)

• Activation record exists only during (C, …)

Environment of a contour

• E(C) is all the contours mentioned on the
path from C to the root of the contours tree

• All elements of E(C) are visible from C and
can be accessed from C
– “Elements of a contour” includes variables and

other contours defined in it
• All other elements of the tree are not

visible and cannot be accessed
© 2019, Peter J. Denning 9

© 2019, Peter J. Denning 10

• In the example given earlier:
– MAIN contains variable x; all embedded contours can refer to x.
– If A also has a variable x, C and D see A’s x but not MAIN’s x
– MAIN can refer to its own x, but not A’s
– A contains variable y; C and D can refer to y, but not to B, E, or MAIN
– MAIN declares A and B; all embedded contours can call A and B.
– C cannot call E. E cannot call C or D.
– No contour can see inside any contour at a higher numbered block

level

Relation with OS Levels

• Restriction that contour can access only the names
in its environment similar to the OS level
requirement of only downward calls.

• Blocks levels resemble OS levels in that you can
access a lower block level from a higher, but not
vice versa.

• Blocks levels not exactly the same because contours
can only access closest instance of a name; in OS a
level can access any lower-level instance.

© 2019, Peter J. Denning 11

Differences with previous model

• The standard procedure call model, Ch 11.1,
restricts any procedure to its local variables – all
contained in its activation record, AR.

• The contour model allows procedures to access
names in ARs of enclosing contours.

• To do so, maintain DISPLAY, a set of registers that
point to the bases of all ARs whose contours
enclose the current AR.

© 2019, Peter J. Denning 12

© 2019, Peter J. Denning 13

Implementation

• Diagrams on the next pages show examples of the
configurations of stacks, activation records, and
contours

© 2019, Peter J. Denning 14

1000

CODE

IP

DATA

SP

LA 30
L

72

1030

CPU RAM

Current instruction is “Load Address 30”.
Executing it places DATA+30 = 1030 on top of the stack.

Next instruction is “Load”. Executing it will replace 1030 at
SP with the value stored in location 1030, i.e., with 72.

1030:

© 2019, Peter J. Denning 15

saved state

parameters

locals

working
stack

STRUCTURE OF AR IN STANDARD MODEL

Starts with slot reserved for return value

Saved state area contains return state to
restore caller’s environment (saved IP and
AR)

Parameter area contains parameters of the
call.

Locals area contains local variables of the
procedure.

Working stack contains the temporary
store, managed as stack. NOTE: working
stack is not part of the AR template. The
template is a header of the full AR of the
procedure.

return value
AR

SP

© 2019, Peter J. Denning 16

return value

saved state

parameters

locals

working
stack

RETURNING A VALUE

Frame element AR is the target for the
return value v. Address of variable Z to hold
the return value is placed by “LA Z” just
prior to call. After the return the stack will
have configuration S Z v and a ST instruction
will place the value in the local variable Z

When the called procedure is ready for
return it leaves the return value on top of
the stack. With these instructions, it moves
that value to the return-value slot and
returns:

L AR contents of AR to top stack
EXC exchange the top two elements
ST leave v in the return-value slot
RET return to caller

AR

SP

v
AR

Z

© 2019, Peter J. Denning 17

(MAIN, … (A, … (C, … (B, …) …) …) …)

MAIN

A

C

MAIN
A
C

t1

t1

2 0
1
2
3
4

DP

DISPLAY contains the current environment
(at time t1). Environment E(C) = (C,A,MAIN) is
represented as a list of the bases of the current and
enclosing ARs.

DP contains the current block level in static tree.

DISPLAY[DP] is base of current AR.

Extend the definition of LA to include the block level k of
the contour in which an address x is to be interpreted:

LA k,x

This instruction puts DISPLAY[k]+x on stack. Note that
k≤DP because no contour can see variables deeper in the
tree. To access a local variable of the current AR:

LA DP,x

DISPLAY

The registers of the DISPLAY and the
display pointer DP replace the single

register DATA shown previously.

© 2019, Peter J. Denning 18

(MAIN, … (A, … (A, … (C, … (B, …) …) …) …) …)

MAIN

A

C

MAIN
A
C

t1

t1

2 0
1
2
3
4

DP
More frames may be on the stack than are indicated
by the display. In this case, a recursive call on A leaves
two versions of A’s AR.

Diagram illustrates an extra frame inserted by a
recursive call on A. The A pointer in DISPLAY[1] is to
the most recent invocation of A.

The DISPLAY permits referencing statically-enclosing
contours no matter what the dynamics of contour calls
have been.

DISPLAY

A

© 2019, Peter J. Denning 19

(MAIN, … (A, … (A, … (C, … (B, …) …) …) …) …)

MAIN

A

C

MAIN
B
C

t2

t2

1 0
1
2
3
4

DP

Now C has called B, which is visible because it is
declared in MAIN. The environment E(B)=(B,MAIN) is
shown in the DISPLAY.

B can refer to its own variables or MAIN, but not to
variables in A or C. The pointer to C remains in the
DISPLAY but cannot be used because of the restriction
that contours cannot reference deeper levels.

DISPLAY

A

B

© 2019, Peter J. Denning 20

(MAIN, … (A, … (C, … (B, …) …) …) …)

MAIN

A

C

MAIN

A

C

B

MAIN
A
C

MAIN
B
C

t1 t2

t1 t2

2 0
1
2
3
4

0
1
2
3
4

DP
1

DP

This example shows the stack just
before and after the call on B.
Again, note that C remains in the
DISPLAY but is not accessible .

© 2019, Peter J. Denning 21

(MAIN, … (A, … (C, … (B, …) …) …) …)

MAIN

A

MAIN

A

C

MAIN
A

MAIN
A
C

t1 t2

t1 t2

1 0
1
2
3
4

0
1
2
3
4

DP
2

DP

This example shows the stack just before and after the call on C.
A can call C because C is defined within A. After the call, the
display pointer has increased by 1 and the display has added one
more pointer.

AR template structure

© 2019, Peter J. Denning 22

return value

saved PSW

saved DP

parameters

locals

saved DISPLAY[k]

Prior to the call, the stack configuration is
S e a k, where e = entry of called
procedure, a = length of AR template,
and k is the block level of the called
procedure.

The template for the AR header is almost
the same as in the standard model, but
the “saved AR” has been replaced by the
pair (saved DP, saved DISPLAY[k])

PSW (program status word) contains IP,
kernel mode, and interrupt masks

a

Operation of CALL and RET

K = pop Mem[SP]
B = SP-(pop Mem[SP])
Mem[B+1] = IP

Mem[B+2] = DP
Mem[B+3] = DISPLAY[K]
IP = pop Mem[SP]

DP = K
DISPLAY[K] = B

CALL =

SP = DISPLAY[DP]
DISPLAY[DP] = Mem[SP+3]
DP = Mem[SP+2]

IP = Mem[SP+1]

RET =

For A the AR template, changes stack
from S e a k to S A and sets IP=e

Prior to call, DISPLAY[DP] points to
base of caller’s AR; after, DISPLAY[k]
points to base of called AR and DP=k

Saves the caller IP, DP, and DISPLAY[k]
in slots 1, 2, and 3 of the new AR

Restores the caller state by reloading
the IP, DP, and DISPLAY[k] registers

Leaves SP at base of called AR, which
holds the return value

© 2019, Peter J. Denning 23

© 2019, Peter J. Denning 24

EXAMPLE CALLING SEQUENCE
(simple function call)

Let uppercase denote a variable and lowercase its location offset in its AR. Let X, Y be local
variables of a procedure at block level j. Function F is defined at level k ≤ j. Function invocation
Y = F(X) is compiled as shown, constructing the new frame on top of the stack.

LA by,y address of Y on stack (Y at block level by≤j)
SP = SP+4 reserve for return value, caller state
L DP,x load parameter X value (X at current block level DP)
L locals one or more L to load local values
LA f load entry point of procedure F (in CODE segment)
LA a load a = size of AR template
LA k load k = block level of F
CALL invoke procedure
ST store result in Y (stack configuration S y v)

© 2019, Peter J. Denning 25

EXAMPLE CALLING SEQUENCE
(function call with arithmetic expression as parameter)

Let uppercase denote a variable and lowercase its location in its AR. Let X, Y, Z be local

variables of a procedure at block level j. Function invocation Y = F(X+Z) is compiled as shown,

constructing the new frame on top of the stack. Thus, we can have an arithmetic expression in

place of a parameter.

LA by,y address of Y on stack (Y at block level by≤j)
SP = SP+4 reserve for return value, caller state
L DP,x load X value (X at block level j=DP)
L DP,z load Z value (Z at block level j=DP)
A X+Z value now on stack in parameter slot
L locals one or more L to load local values
LA f entry point of procedure F (in CODE segment)
LA a load a = size of AR template
LA k load k = block level of F
CALL invoke procedure
ST store result in Y (stack configuration S y v)

© 2019, Peter J. Denning 26

EXAMPLE CALLING SEQUENCE
(function call with another function call as parameter)

Let uppercase denote a variable and lowercase its location in its AR. Let X, F, and G be local
names at block level j=DP. Function invocation Y = F(G(X)) is compiled as shown, constructing
the new frame on top of the stack. Thus, we can include a function call to obtain value of a
parameter: the blue code “interrupts” the AR setup of the black code to compute G(X) in the
parameter 1 position of F’s AR.

LA by,y address of Y on stack (Y at block level by≤j)
SP = SP+4 reserve for saved state of caller of F
SP = SP+4 reserve for saved state of caller of G (i.e., F)
L DP,x load x value
L locals one or more L for locals of g
L g load entry point of g (in CODE segment)
L ag load size of AR for g
L bg load block level at which g defined (bg ≤ j+1)
CALL call G(X), leaving value in parameter 1 slot of F
L locals one or more L to load local values of f
LA f load entry point of f (in CODE segment)
LA af load size of AR for f
LA kf load block level at which f defined (bf ≤ j)
CALL invoke procedure, leaving v=F(G(X)) on stack
ST store result in Y (stack configuration S y v)

Summary
• Introduced contour model for block structured languages that allow

non-local references to enclosing blocks.
• Noted a similarity between visible lower OS levels and visible lower

block levels
• Introduced DISPLAY and display pointer DP to keep track of bases of

ARs of all blocks enclosing the current block
• Modified the LA instruction to refer to offsets in enclosing blocks
• Modified the CALL to save DISPLAY[k] and DP rather than just AR
• Modified the RET to restore caller’s DISPLAY[k] and DP
• As before RET leaves computed function value on top of stack, from

where it can be saved to a local variable after return

© 2019, Peter J. Denning 27

