
Standard model for
procedure activation

Peter J. Denning
July 2019

What is standard model?

• Procedures are active in the interval between call
and return
• Storage for variables and computation is allocated

only when procedure is active
• Called an activation record (AR) or frame

• Procedures can call others, or even themselves
(recursion)
• Returns are in reverse order from calls (LIFO order) --

hence ARs can be pushed on a stack at call and popped
on return

© 2019, Peter J. Denning 2

We present the standard model along with a worked example of
the protocols for procedure call and return for a program LOG that
computes logarithms. This model is described in the chapter on
Machines in Great Principles of Computing (Denning and Martel,
MIT Press, 2015).

The table on the next slide is the instruction set of a simple stack
machine used in the example. (Excerpted from the book chapter.)

These protocols demonstrate the close cooperation needed
between the hardware designer and the software designer so that
procedure call and return can be lightning fast.

LOG program example

© 2019, Peter J. Denning 3

© 2019, Peter J. Denning 4

Program F contains a call
to a LOG function

Z = LOG(Y)

Ideal compilation if
machine had a LOG

instruction

LA Z
L Y
LOG

ST

Instructions for stack
machine instruction set

on previous slide

How to simulate LOG
with a function call?

Replace LOG with an
instruction sequence

that calls a LOG function
in software

© 2019, Peter J. Denning 5

First, compile the program for
LOG into LOG.EXE (binary) and

ART (activation record template)

binary code

return value

saved IP

saved AR

parameter 1

local 1

local 2

ART

Assume binary code for LOG has
two local variables

Convention: all functions leave
their final value in the first slot

© 2019, Peter J. Denning 6

ART is the structure for the first
few stack slots of the AR of the

called procedure
(in this case 6 slots)

IP is the CPU register holding the
address of the caller’s next instruction

AR is the CPU register holding the
base address of the caller’s
activation record

This is the parameter to LOG

binary code segment of all
functions is read-only (execute-
only on systems that support it)
to protect the trusted software
from tampering

CALL instruction

• Caller uses calling sequence to
• build activation record A on stack
• place entry point e on stack
• place AR size a on stack

• Just before CALL, stack configuration is S1 S2 A e a
• S1 = stack prior to caller’s current AR
• S2 = caller’s current AR (register AR points to base S2)

• After CALL, configuration is S1 S2 A, with
• A = Register AR now points to base of A
• SP now points to end of A

© 2019, Peter J. Denning 7

Operation of CALL and RET

© 2019, Peter J. Denning 8

B = SP-(pop Mem[SP])
Mem[B+1] = IP
Mem[B+2] = AR

IP = pop Mem[SP]
AR = B

CALL =

SP = AR
AR = Mem[SP+2]
IP = Mem[SP+1]

RET =

Changes stack from S1 S2 A e a to
S1 S2 A and sets IP=e

Prior to call, AR register points to
base of S2; after to base of A

Saves the caller IP and AR registers
in slots 1 and 2 of the new AR

Restores the caller state by
reloading the PSW and AR registers

Leaves SP at base of called A, which
holds the return value

LA Z
SP = SP+3
L Y

L loc1
L loc2
LA LOG

LA 6
CALL
ST

target address for result of LOG(Y)
reserve first 3 slots of AR
load the value of parameter Y (= LA Y, L)

load the value of local 1
load the value of local 2
load entry point of LOG.EXE code

load size of new AR (6 slots)
call instruction
store result (target address Z already on stack)

Example calling sequence

© 2019, Peter J. Denning 9

The compiler builds the new activation record on the stack according to the
template, then calls LOG. Before it starts it puts the target Z address on top
because the net effect of calling LOG will be to leave the value of LOG(Y) on
top of the stack, in the proper configuration for the store operation.

© 2019, Peter J. Denning 10

AR (200)

SP (300)

stack

IP (992)

Assume CALL instruction in prior slide
is at location 999, the base of the
current AR is 200, and the stack
pointer SP is 300. The stack
configuration just before the calling
sequence begins is shown above.

© 2019, Peter J. Denning 11

AR (200)

SP (307)

stack

return value

saved IP

saved AR

parameter 1

local 1

local 2

IP (1000)

Z

The purpose of the calling sequence is to
grow the stack with a copy of the LOG
function’s AR template, shown here in
red. CALL has not been executed yet.

entry of LOG

6

© 2019, Peter J. Denning 12

AR (200)

SP (300)

stack

IP (1000)
IP (2000)

AR (301)

SP (307)

Assume entry point to LOG is
at location 2000. The stack
has this configuration just
after the CALL. The base of
the new AR is 6 slots below
the SP at the time of call.

return value

saved IP

saved AR

parameter 1

local 1

local 2

Z

entry of LOG

6

1000

200

value Y

local 1

local 2

Z

© 2019, Peter J. Denning 13

AR (200)

SP (301)

stack

IP (1000)

return value

saved IP

saved AR

parameter 1

local 1

local 2

Z

entry of LOG

6

1000

200

value Y

local 1

local 2

Z

After the RET, the saved IP
and AR are restored and the
stack is in proper
configuration for the ST
instruction to save the
returned value LOG(Y) into Z.

LOG(Y)

Z

… Y ...

... Loc 1 ...

... Loc 2 ...

Binary code of LOG Function

uses of parameter and

locals to compute LOG(Y)

addresses of these uses:

Mem[AR+3]

Mem[AR+4]

Mem[AR+5]

…
<LOG(Y) on top stack>
LA AR
EXC
ST
RET

The computed value is on

top of the stack. The next

three instructions copy it

to the return-value slot at

the base of the AR, so that,

after RET, it is on top of he

stack.

Returning from a call

© 2019, Peter J. Denning 14

AR

Summary

• We illustrated the key ideas of subprogram call and
return using the LOG procedure
• Called procedure has activation record pushed on

stack prior to call
• CALL instruction saves caller’s state and starts

executing the called procedure’s code
• RET instruction restores caller’s state and leaves

computed value on top of stack ready to be stored
in the variable specified by caller

© 2019, Peter J. Denning 15

