Queueing Basics

Peter J. Denning

June 2019

Performance Questions

- Performance questions always part of a systems discussion
 - throughput (jobs per second)
 - response time (seconds)
 - congestion and bottlenecks
 - capacity planning
- How to measure and forecast?

Airline Reservations Example

- 1000 reservation agents around the USA.
- "Disk farm" somewhere in West Virginia.
- Each agent issues new transactions against the database every 60 seconds.
- Every transaction accesses the directory disk an average of 10 times.
- The directory disk takes an average of 5 milliseconds to serve a request and is in use 80% of the time.

What is the throughput (jobs per second) completed by the entire system?

- What is the response time experienced by an agent waiting for a transaction?
- Can these questions be answered precisely? Approximately? Not at all?

Tools

- Queueing theory gives the basic tools for answering such questions.
- The theory deals with randomness in physical processes such as
 - the arrival times of agent requests
 - the service times at the disks and CPUs
 - lengths of queues
 - variations in response times
- The theory allows us to characterize the performance measures statistically, in terms of averages, given the statistics of arrivals and services

Erlang's Model

- The first use of queueing theory in engineering occurred around 1909 when the Danish engineer A. K. Erlang modeled telephone systems, including interarrival times and lengths of calls.
- His model gave accurate predictions of the number of active calls, important for the sizing of telephone switching centers.

User i picks up the phone; gets a dial tone; dials the number of user j; who picks up the phone; they talk together; and they hang up.

Assumptions:

The next call starts randomly in time with rate a. A call terminates randomly in time with rate b. State of system is n, number of calls in progress. Number of switch points, N, is less than number of users.

Question:

What is the probability P(n) that the system will be the state where n calls are simultaneously in progress?

Rationale:

P(N) is probably that all N crosspoints will be in use. No dial tone if someone attempts a call when state n > N.

What does "random rate a" mean?

With this assumption, the histogram of times between events is exponential with parameter a and mean 1/a. (Interpretation on next picture.)

Histogram

Erlang's state space

Up-transitions occur with each new call, at rate a. Down transitions occur with each hangup, at rate b. Assume a
b so that system is not overwhelmed. The rates are independent of state. There is no limit on the maximum number of calls. Let p(n) denote the fraction of time system state = n.

At any cut, the flow up must balance the flow down, or p(n-1)a = p(n)bthus $p(n) = (a/b)p(n-1) = (a/b)^n p(0)$ which is a geometric series. The sum of the series for all p(n) must be 1: $\Sigma p(n) = p(0) \Sigma (a/b)^n = p(0)/(1-(a/b))$ or p(0) = 1-(a/b) It is usually easier to compute the p(n) through simple iterative methods than to evaluate a closed-form mathematical expression, especially when the mathematics allow n to become infinite whereas n is bounded in the real system.

Limit the state diagram to states 0,1,...,N. Use this procedure:

- (1) Guess p(0) -- e.g., set p(0)=1.
- (2) Compute p(n) = p(n-1)(a/b) for n=1,...,N.
- (3) Compute the sum S of the p(n). (S is called the "normalizing constant")
- (4) Replace each p(n) with p(n)/S.

Now we have a valid probability distribution: it satisfies the recursion and sums to 1.

When p(N) is small, the error between the math expression and the computer evaluation is small.

example (see next page)

```
new-call requests every 120 sec
(a = 1/120)
```

```
average call lasts 100 sec
(b = 1/100)
```

What is the median number of active calls? (3)

What is probability that the telephone exchange is saturated? (0.07%)

What is the probability that the telephone exchange is idle? (16%)

What is the 90th percentile of the number of active calls? (11)

raw p(n): "guess" p(0)=1, then compute each new p(n) = (a/b)p(n-1). Gets ratios right.

norm p(n): divide each raw p(n) by the sum of all p(n). Now they all add up to 1 and have the proper ratios.

cum p(n): the cumulative sum of p(0)+...+p(n). Shows approach to 1.0 as n increases.

inf approx: pretends n goes to infinity. Starts with p(0) = 1-a/b and uses the same recursion.

Erlang Mo	del Examp	ble		
	0.0007			
a l	0.0085			8 5
D (- /L)	0.0100	2		2
(a/D)	0.8555			
2	raw p(n)	norm p(n)	cum p(n)	inf approx
	1 0000	0 1673	0 1673	0 1667
1	0.8333	0.1394	0.3066	0.1389
2	0.6944	0.1354	0.4229	0.1353
7	0.5797	0.0969	0.4220	0.0945
3	0.0107	0.0907	0.5198	0.0960
	0.4019	0.0607	0.6002	0.0604
3	0.4019	0.0672	0.6674	0.0670
5	0.5549	0.0560	0.7255	0.0008
	0.2791	0.0467	0.7701	0.0465
8	0.2326	0.0389	0.8090	0.0388
9	0.1938	0.0324	0.8414	0.0323
10	0.1615	0.0270	0.8685	0.0269
11	0.1346	0.0225	0.8910	0.0224
12	0.1122	0.0188	0.9097	0.0187
13	0.0935	0.0156	0.9254	0.0156
14	0.0779	0.0130	0.9384	0.0130
15	0.0649	0.0109	0.9492	0.0108
16	0.0541	0.0090	0.9583	0.0090
17	0.0451	0.0075	0.9658	0.0075
18	0.0376	0.0063	0.9721	0.0063
19	0.0313	0.0052	0.9773	0.0052
20	0.0261	0.0044	0.9817	0.0043
21	0.0217	0.0036	0.9853	0.0036
22	0.0181	0.0030	0.9884	0.0030
23	0.0151	0.0025	0.9909	0.0025
24	0.0126	0.0021	0.9930	0.0021
25	0.0105	0.0018	0.9948	0.0017
26	0.0087	0.0015	0.9962	0.0015
27	0.0073	0.0012	0.9974	0.0012
28	0.0061	0.0010	0.9984	0.0010
29	0.0051	0.0008	0.9993	0.0008
30	0.0042	0.0007	1.0000	0.0007
sum	5.9789	1.0000		

Servers

- Server is a station that satisfies certain tasks within jobs.
- Has one or more internal parallel processors (we assume one).
- Has a queueing mechanism to make tasks not in service wait.
- Has input point for task arrivals.
- Has output point for task completions.

simple notation for single server with FIFO queueing

more complex notation for single server with FIFO queueing, showing the queue.

Network of Servers

Set of servers with interconnection pathways.

Open or closed.

Closed network includes all its customers in a finite population of N jobs.

observation period: ${\sf T}$

arrival rate: $\lambda = A/T$

completion rate: X = C/T

utilization: U = B/T

mean service time: S = B/C

Flow balance: A=C

A arrivals server B busy time U = B/T = (B/C)(C/T) = S X

Utilization law: U = SX

Measuring a Network

job = sequence of tasks,

each at one server

=> job visits servers one at a time

C0 = jobs leaving system along "new programs" path (system throughput X = C0/T) Ci = jobs leaving server i (server throughput Xi = Ci/T)

Visit ratio Vi

- = Ci/C0
- = number of visits to server i per job

Xi = Ci/T = (Ci/C0) (C0/T) = Vi X0

Forced Flow Law: Xi = Vi X0

Measuring a Network

Central Server System Example

parameters of system:

- Si = mean service time per visit to server i
- Vi = mean number of visits to server i
- N = total number of jobs in the system

Time Sharing System Example

parameters of system:

- Si = mean service time per visit to server i
- Vi = mean number of visits to server i
- N = total number of jobs in the system
- Z = mean think time between requests for the system

User model: (think, wait)*

Execution model: (CPU)(I/O, CPU)*

Time Sharing System Example

disk throughput:

Xi = Ui/Si = 0.8/0.005

= 160 tasks/sec

system throughput:

X = Xi/Vi = 160/10

= 16 transactions/sec

response time:

the throughput and response time can be answered exactly using the operational laws

Prediction in Airline Reservations System Example

What if disk access method were changed to reduce accesses to 8 per transaction? Well ...

- Xi = 160 accesses per second
- X = Xi/Vi = 160/8 = 20 transactions per second

R = 1000/20 - 60 = 50 - 60 = -10 ???

The problem is that changing disk accesses affects relative demand for other servers, which in turn affects flow reaching the disk, affecting its utilization.

How it does so depends on parameters of the other servers.

Cannot do predictions without knowledge of the whole system.

The simplest prediction method is bottleneck analysis.

Bottleneck Analysis

- Bottleneck: a choke point in the system's flow structure -- tasks pile up there because they flow past too slowly.
- Utilization and forced flow laws tell that Ui = XiSi = ViSiX = DiX. (Define demand Di = ViSi.)
- For given X, servers with larger demand Di have higher utilizations; server with highest demand Di has highest utilization.
- Bottleneck server b is one for which Db = max{Di}.
- Since utilizations cannot exceed 1, server with highest demand limits throughput: X = Ub/Db ≤ 1/Db.
- This also limits response time: $R = N/X Z \ge N Db Z$.

Given:

CPU time per job 1 sec 100 disk accesses per job 20 msec per disk access think time 30 sec

What are model parameters?

V2 = 100 S2 = 0.02 sec V1 = 1+V2 (why?) = 101 S1 = D1/V1 = 1/101 = 0.0099 sec. D1 = V1S1 = 1 sec. D2 = V2S2 = (100)(0.02) = 2 sec. Z = 30

Bottleneck Example --throughput asymptotes

jobs/sec

Bottleneck Example --response time asymptotes

Faster disk has access time 15 msec. Is 5sec response time feasible with 40 users?

Change S2 to 0.015 Now D2 = (100)(0.015) = 1.5DISK is still bottleneck (D1 = 1.0) R(N) \geq NDb-Z = (40)(1.5)-30 = 30 sec.

No, 5-sec response time not feasible.

New index structure reduces disk accesses to 50 on the faster disk. Is 5-sec response time feasible with 40 users?

Change V2 to 50 Now D2 = (50)(0.015) = 0.75Now CPU is bottleneck (D1 = 1.0) R(N) \ge NDb-Z = (40)(1)-30 = 10 sec.

No, 5-sec response time not feasible. To achieve it, need to speed up the CPU.

Use 2x faster CPU plus the improved disk. Is 5-sec response time feasible with 40 users?

Change D1 to 0.5 sec. Now DISK is bottleneck (D2 = 0.75) $R(N) \ge NDb-Z = (40)(0.75)-30 = 0$ sec. Also $R(N) \ge R(1) = D1+D2 = 1+0.75 = 1.75$

Yes, 5-sec response time is feasible.

When speeding up a bottleneck, watch our for the next bottleneck.

Response time objective may need several servers to become faster so that all potential bottlenecks are have their asymptotes to the right of the desired operating point.

Computational Algorithms

- Bottleneck analysis useful to discover if desired operating points are in feasible regions and tell which servers need additional capacity.
- What algorithm can we use to calculate the entire curve of R(N)?
- The Mean Value Analysis (MVA) algorithm does this.

Mean Value Analysis (MVA)

- MVA algorithm calculates several mean values together --
 - Ri = mean response time per visit to server i
 - R = mean service time per visit to the system
 - X = throughput of the system
 - Qi = mean queue length at server i
- MVA does this for n = 0, 1, ... , N.
- The set of mean values for n-1 is used to compute the set of mean values for n.

```
set all Qi(0) = 0
for n = 1 to N do {
   set all Ri(n) = Si*(1+Qi(n-1))
   set R(n) = sum of {Vi*Ri(n)}
   set X(n) = n/(R(n)+Z)
   set all Qi(n) = X(n)*Vi*Ri(n)
   }
exit
```


Per-visit server response time at a server is the arriver's mean service plus the mean service needed by everyone queued in front of the arriver. The arriver sees the same mean queue as would outside observer in a system with one less job (arriver removed).

Alternate Form MVA:

Define Residence Time Ti(n) = ViRi(n)

```
set all Qi(0) = 0
for n = 1 to N do {
   set all Ti(n) = Di*(1+Qi(n-1))
   set R(n) = sum of {Ti(n)}
   set X(n) = n/(R(n)+Z)
   set all Qi(n) = X(n)*Ti(n)
   }
exit
```

n	T1	•••	ΤK	R	Х	Q1	•••	QK
0	0	•••	0					
1	1	•••	K	K+1	K+2	K+3		2K+2
2								
3								
•••								

Having filled in one row, the algorithm fills in values in the next row in the order indicated by the numbers 1, ..., 2K+2.

When done, the R-column contains the complete curve R(n). Same for X-column.

MVA E	xamp	ole				
Paramet	ers.					
V1	101	1	computed			
¥2	100		compared			
G1	0.0099	Sec	computed			
57	0.0077	Sec	compared			
7	70	Sec				
D1		Sec				
02		Sec	a a manufa d			
02	2	Sec	compared			
	T1	T2	P	×	01	02
		12	^	n	0.000	0.000
1	1.000	2 000	3 000	0.030	0.030	0.061
2	1.070	2.000	X 152	0.060	0.062	0.001
7	1.050	2.121	7 710	0.000	0.002	0.720
	1.002	2.236	7.502	0.050	0.096	0.203
4	1.070	2.406	7.705	0.119	0.151	0.207
	1.101	2.373	3.703	0.140	0.166	0.302
5	1.168	2.764	3.952	0.177	0.206	0.489
	1.206	2.977	4.184	0.205	0.247	0.610
8	1.247	3.219	4.466	0.252	0.289	0.747
9	1.289	3.495	4.784	0.259	0.334	0.904
10	1.554	3.808	5.142	0.285	0.379	1.084
11	1.579	4.167	5.547	0.309	0.427	1.290
12	1.427	4.579	6.006	0.333	0.476	1.526
13	1.476	5.052	6.528	0.356	0.525	1.798
14	1.525	5.596	7.121	0.377	0.575	2.111
15	1.575	6.221	7.796	0.397	0.625	2.469
16	1.625	6.938	8.563	0.415	0.674	2.879
17	1.674	7.757	9.431	0.431	0.722	3.344
18	1.722	8.689	10.410	0.445	0.767	3.870
19	1.767	9.740	11.507	0.458	0.809	4.459
20	1.809	10.917	12.726	0.468	0.847	5.110
21	1.847	12.221	14.067	0.477	0.880	5.824
22	1.880	13.647	15.527	0.483	0.908	6.595
23	1.908	15.190	17.098	0.488	0.932	7.418
24	1.932	16.835	18.767	0.492	0.951	8.285
25	1.951	18.570	20.521	0.495	0.965	9.189
26	1.965	20.379	22.344	0.497	0.976	10.122
27	1.976	22.245	24.221	0.498	0.984	11.077
28	1.984	24.154	26.138	0.499	0.990	12.047
29	1.990	26.095	28.084	0.499	0.993	13.028
30	1.993	28.057	30.050	0.500	0.996	14.017

Note that X approaches a saturation value, 1/D1 = 0.5

Note that R approaches a saturation line, n*Db-Z = 2*n-30

Models for Multiprogramming

- In a virtual memory system the number of page faults generated by a job depends on how much space allocated to it.
- Crude model: assume the memory of M pages is equally allocated on average among N jobs; thus each has an average of M/N pages.
- Then set V2 (visits to paging disk) to F(M/N), where F is the fault function for the workload.

- This means D2 is a function of N.
- As N increases, F(M/N) increases (less space), and D2(N) increases.
- The throughput bound is now min{1/D1, 1/D2(N)}.
- For small N CPU may be bottleneck and X(N) ≤ 1/D1.
- For large N, DISK is the bottleneck and X(N) ≤ 1/D2(N).

Bottlenecks explain thrashing.

Can use the MVA model to evaluate. To calculate X(N), set D2=D2(N) and compute X(n) for n=1,...,N with that fixed value of D2. Repeat for each value of N.

(Model assumes that the demands are constant across all rows; fails if this is not so.)

53

Example output from a model in which D2 is always larger than D1 and thus the bounds do not cross. However, X(N) still shows a peak and thrashing. (A(N) is an approximation that does not work well.)