
Queueing Basics

Peter J. Denning
June 2019

© 2019, Peter J. Denning

Performance Questions

• Performance questions always part of a systems
discussion
– throughput (jobs per second)
– response time (seconds)
– congestion and bottlenecks
– capacity planning

• How to measure and forecast?

2

© 2019, Peter J. Denning

Airline Reservations Example

• 1000 reservation agents around the USA.
• “Disk farm” somewhere in West Virginia.
• Each agent issues new transactions against the

database every 60 seconds.
• Every transaction accesses the directory disk an

average of 10 times.
• The directory disk takes an average of 5

milliseconds to serve a request and is in use 80%
of the time.

3

© 2019, Peter J. Denning

• What is the throughput (jobs per second)
completed by the entire system?

• What is the response time experienced by an
agent waiting for a transaction?

• Can these questions be answered precisely?
Approximately? Not at all?

4

© 2019, Peter J. Denning

Tools
• Queueing theory gives the basic tools for answering such

questions.
• The theory deals with randomness in physical processes

such as
– the arrival times of agent requests
– the service times at the disks and CPUs
– lengths of queues
– variations in response times

• The theory allows us to characterize the performance
measures statistically, in terms of averages, given the
statistics of arrivals and services

5

© 2019, Peter J. Denning

Erlang’s Model

• The first use of queueing theory in engineering
occurred around 1909 when the Danish engineer
A. K. Erlang modeled telephone systems,
including interarrival times and lengths of calls.

• His model gave accurate predictions of the
number of active calls, important for the sizing of
telephone switching centers.

6

© 2019, Peter J. Denning

telephone
switching

center

Set of users
initiating calls

at random times

Set of users receiving
calls and hanging up
at random times

User i picks up the phone;
gets a dial tone;
dials the number of user j;
who picks up the phone;
they talk together;
and they hang up.

Assumptions:
The next call starts randomly in time with rate a.
A call terminates randomly in time with rate b.
State of system is n, number of calls in progress.
Number of switch points, N, is less than number of users.

Question:
What is the probability P(n) that the system will be
the state where n calls are simultaneously in progress?

Rationale:
P(N) is probably that all N crosspoints will be in use.
No dial tone if someone attempts a call when state n > N.

7

© 2019, Peter J. Denning

What does "random rate a" mean?

time
dt

probability of an event in this tiny time interval (dt)
is a•dt independent of every other disjoint time interval

With this assumption, the histogram of times between events
is exponential with parameter a and mean 1/a. (Interpretation
on next picture.)

8

© 2019, Peter J. Denning

time

ae-at

t

p(t)

The bar represents the probability that the time
between (the random) events is between t and t+dt.

Mathematicians have shown that this height must be
p(t) = ae-at and that the mean time between events is 1/a.

Histogram

Erlang empirically verified that his
assumptions of random arrivals and
hang-ups gave exponential distributions of
times between arrivals and call holding times.

9

© 2019, Peter J. Denning

0 1 2 n-1 n

Erlang's state space
a a a a a a

bbbbbb

Up-transitions occur with each new call, at rate a.
Down transitions occur with each hangup, at rate b.
Assume a<b so that system is not overwhelmed.
The rates are independent of state.
There is no limit on the maximum number of calls.
Let p(n) denote the fraction of time system state = n.

At any cut, the flow up must balance
the flow down, or

p(n-1)a = p(n)b
thus

p(n) = (a/b)p(n-1) = (a/b)n p(0)
which is a geometric series. The sum
of the series for all p(n) must be 1:
S p(n) = p(0) S (a/b)n = p(0)/(1-(a/b))

or
p(0) = 1-(a/b)

10

© 2019, Peter J. Denning

It is usually easier to compute the p(n) through simple iterative methods
than to evaluate a closed-form mathematical expression, especially when
the mathematics allow n to become infinite whereas n is bounded in the
real system.

Limit the state diagram to states 0,1,...,N. Use this procedure:

(1) Guess p(0) -- e.g., set p(0)=1.
(2) Compute p(n) = p(n-1)(a/b) for n=1,...,N.
(3) Compute the sum S of the p(n). (S is called the “normalizing constant”)
(4) Replace each p(n) with p(n)/S.

Now we have a valid probability distribution: it satisfies the recursion
and sums to 1.

When p(N) is small, the error between the math expression and the
computer evaluation is small.

11

© 2019, Peter J. Denning

example (see next page)

new-call requests every 120 sec
(a = 1/120)

average call lasts 100 sec
(b = 1/100)

What is the median number of active calls?
(3)

What is probability that the telephone exchange is saturated?
(0.07%)

What is the probability that the telephone exchange is idle?
(16%)

What is the 90th percentile of the number of active calls?
(11)

12

© 2019, Peter J. Denning

raw p(n): "guess" p(0)=1,
then compute each new
p(n) = (a/b)p(n-1). Gets
ratios right.

norm p(n): divide each
raw p(n) by the sum of
all p(n). Now they all
add up to 1 and have the
proper ratios.

cum p(n): the cumulative
sum of p(0)+...+p(n).
Shows approach to 1.0
as n increases.

inf approx: pretends n
goes to infinity. Starts
with p(0) = 1-a/b and
uses the same recursion.

13

© 2019, Peter J. Denning

Servers

• Server is a station that satisfies certain tasks
within jobs.

• Has one or more internal parallel processors (we
assume one).

• Has a queueing mechanism to make tasks not in
service wait.

• Has input point for task arrivals.
• Has output point for task completions.

14

© 2019, Peter J. Denning

i

i

i

simple notation for single server
with FIFO queueing

more complex notation for single server
with FIFO queueing, showing the queue.

notation for multi-server with FIFO
queueing, showing internal processors.

15

© 2019, Peter J. Denning

Network of Servers

Set of servers with interconnection pathways.

Open or closed.

Closed network includes all its customers in
a finite population of N jobs.

new programs

CPU

I/O

I/O

I/O

16

© 2019, Peter J. Denning

Measuring a Server

server

A
arrivals

C
completions

B
busy time

observation period: T

arrival rate: l = A/T

completion rate: X = C/T

utilization: U = B/T

mean service time: S = B/C

17

© 2019, Peter J. Denning

Measuring a Server

server

Flow balance: A=C

Utilization law: U = SX

A
arrivals

C
completions

B
busy time

U = B/T = (B/C)(C/T) = S X

18

© 2019, Peter J. Denning

Measuring a Server

server
X

load n(t)

Mean load: Q = W/T

Mean response time: R = W/C

jobs

time, t
0 T

n(t)

Little’s Law: Q = RX

area
W

19

© 2019, Peter J. Denning

Measuring a Network

new programs

CPU

I/O

I/O

I/O
X1

X2

X3

X4

X

job = sequence of tasks,
each at one server

=> job visits servers one at a time

C0 = jobs leaving system along
“new programs” path
(system throughput X = C0/T)

Ci = jobs leaving server i
(server throughput Xi = Ci/T)

Visit ratio Vi
= Ci/C0
= number of visits to

server i per job

Xi = Ci/T = (Ci/C0) (C0/T) = Vi X0

Forced Flow Law: Xi = Vi X0

20

© 2019, Peter J. Denning

new programs

CPU

I/O

I/O

I/O
X1

X2

X3

X4

X

Forced Flow Law: Xi = Vi X

Flow at any one point
in the system determines

flow everywhere

Measuring a Network

21

© 2019, Peter J. Denning

Central Server System Example

new programs

CPU

I/O

I/O

I/O

S2,V2

X

parameters of system:

Si = mean service time
per visit to server i

Vi = mean number of visits
to server i

N = total number of jobs
in the system

S3,V3

S4,V4S1,V1

22

© 2019, Peter J. Denning

Time Sharing System Example

N, Z

CPU

I/O

I/O

I/O

S2,V2

X

parameters of system:

Si = mean service time
per visit to server i

Vi = mean number of visits
to server i

N = total number of jobs
in the system

Z = mean think time between
requests for the system

S3,V3

S4,V4S1,V1

User model: (think, wait)*

Execution model: (CPU)(I/O, CPU)*

23

© 2019, Peter J. Denning

Time Sharing System Example

N, Z

CPU

I/O

I/O

I/O

S2,V2

X

S3,V3

S4,V4S1,V1

Little’s Law for the entire
box says

N = (R+Z) X

R

Response Time Law:
R = N/X - Z

24

© 2019, Peter J. Denning

disk
Si,Vi

1000 agents
think time 60 sec

Airline Reservations System Example

10 accesses per transaction
service time 5 msec per access

utilization 80%

25

© 2019, Peter J. Denning

disk throughput:
Xi = Ui/Si

= 0.8/0.005
= 160 tasks/sec

system throughput:
X = Xi/Vi

= 160/10
= 16 transactions/sec

response time:
R = N/X - Z

= 1000/16 - 60
= 62.5 - 60
= 2.5 sec

the throughput and response time
can be answered exactly

using the operational laws

26

© 2019, Peter J. Denning

Prediction in Airline Reservations System Example

What if disk access method were changed to reduce accesses to 8 per transaction?

Well ...

Xi = 160 accesses per second

X = Xi/Vi = 160/8 = 20 transactions per second

R = 1000/20 - 60 = 50 - 60 = -10 ???

27

© 2019, Peter J. Denning

The problem is that changing disk accesses affects
relative demand for other servers, which in turn
affects flow reaching the disk, affecting its utilization.

How it does so depends on parameters of the other servers.

Cannot do predictions without knowledge of the whole system.

The simplest prediction method is bottleneck analysis.

28

© 2019, Peter J. Denning

Bottleneck Analysis
• Bottleneck: a choke point in the system’s flow structure -- tasks pile up there

because they flow past too slowly.
• Utilization and forced flow laws tell that Ui = XiSi = ViSiX = DiX. (Define

demand Di = ViSi.)
• For given X, servers with larger demand Di have higher utilizations; server

with highest demand Di has highest utilization.
• Bottleneck server b is one for which Db = max{Di} .
• Since utilizations cannot exceed 1, server with highest demand limits

throughput: X = Ub/Db ≤ 1/Db .
• This also limits response time: R = N/X - Z ≥ N Db - Z .

29

© 2019, Peter J. Denning

N

jobs/sec

1/Db

X(N)

30

© 2019, Peter J. Denning

N

sec
N Db - Z

R(1) = ∑ Di

1 Z/Db

R(N)

31

© 2019, Peter J. Denning

Bottleneck Example

N, Z

CPU DISK

X

S2,V2S1,V1

Given:
CPU time per job 1 sec
100 disk accesses per job
20 msec per disk access
think time 30 sec

What are model parameters?
V2 = 100
S2 = 0.02 sec
V1 = 1+V2 (why?) = 101
S1 = D1/V1 = 1/101 = 0.0099 sec.
D1 = V1S1 = 1 sec.
D2 = V2S2 = (100)(0.02) = 2 sec.
Z = 30

32

© 2019, Peter J. Denning

Bottleneck Example --throughput asymptotes

N

jobs/sec

0.5

X(N)

DISK is the bottleneck
b=2 and Db = 2.
X ≤ 1/Db = 0.5

33

© 2019, Peter J. Denning

Bottleneck Example --response time asymptotes

N

sec
2N-30
DISK

R(1) = 3

1 15

R(N)

N-30
CPU

30

34

© 2019, Peter J. Denning

Bottleneck Example

Faster disk has access time 15 msec. Is 5-
sec response time feasible with 40 users?

Change S2 to 0.015
Now D2 = (100)(0.015) = 1.5
DISK is still bottleneck (D1 = 1.0)
R(N) ≥ NDb-Z = (40)(1.5)-30 = 30 sec.

No, 5-sec response time not feasible.

35

© 2019, Peter J. Denning

N

sec 2N-30
DISK

R(1) = 3

1 15

R(N)

30

(1.5)N-30
DISK

20

R(1) = 2.5

40

N-30
CPU

36

© 2019, Peter J. Denning

Bottleneck Example

New index structure reduces disk accesses
to 50 on the faster disk. Is 5-sec response
time feasible with 40 users?

Change V2 to 50
Now D2 = (50)(0.015) = 0.75
Now CPU is bottleneck (D1 = 1.0)
R(N) ≥ NDb-Z = (40)(1)-30 = 10 sec.

No, 5-sec response time not feasible. To achieve it,
need to speed up the CPU.

37

© 2019, Peter J. Denning

Bottleneck Example

Use 2x faster CPU plus the improved disk.
Is 5-sec response time feasible with 40
users?

Change D1 to 0.5 sec.
Now DISK is bottleneck (D2 = 0.75)
R(N) ≥ NDb-Z = (40)(0.75)-30 = 0 sec.
Also R(N) ≥ R(1) = D1+D2 = 1+0.75 = 1.75

Yes, 5-sec response time is feasible.

38

© 2019, Peter J. Denning

Bottleneck Example

When speeding up a bottleneck,
watch our for the next bottleneck.

Response time objective may need
several servers to become faster so

that all potential bottlenecks are have
their asymptotes to the right of the desired

operating point.

39

© 2019, Peter J. Denning

Computational Algorithms

• Bottleneck analysis useful to discover if desired
operating points are in feasible regions and tell
which servers need additional capacity.

• What algorithm can we use to calculate the entire
curve of R(N)?

• The Mean Value Analysis (MVA) algorithm does
this.

40

© 2019, Peter J. Denning

Mean Value Analysis (MVA)

• MVA algorithm calculates several mean values
together --
– Ri = mean response time per visit to server i
– R = mean service time per visit to the system
– X = throughput of the system
– Qi = mean queue length at server i

• MVA does this for n = 0, 1, ... , N.
• The set of mean values for n-1 is used to compute

the set of mean values for n.
41

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ri(n) = Si*(1+Qi(n-1))
set R(n) = sum of {Vi*Ri(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Vi*Ri(n)
}

exit

MVA:

42

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ri(n) = Si*(1+Qi(n-1))
set R(n) = sum of {Vi*Ri(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Vi*Ri(n)
}

exit

MVA:

Little's Law says that Qi = XiRi
Forced Flow Law says Xi = XVi

Combining them says Qi = XViRi

43

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ri(n) = Si*(1+Qi(n-1))
set R(n) = sum of {Vi*Ri(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Vi*Ri(n)
}

exit

MVA:

Response Time Law
says that X(R+Z) = N

44

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ri(n) = Si*(1+Qi(n-1))
set R(n) = sum of {Vi*Ri(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Vi*Ri(n)
}

exit

MVA:

Response time is the sum of
per-visit server response times
weighted by number of visits to

each server.

45

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ri(n) = Si*(1+Qi(n-1))
set R(n) = sum of {Vi*Ri(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Vi*Ri(n)
}

exit

MVA:

Per-visit server response time at a
server is the arriver's mean service

plus the mean service needed by everyone
queued in front of the arriver.

The arriver sees the same mean queue
as would outside observer in a system with

one less job (arriver removed).

46

© 2019, Peter J. Denning

set all Qi(0) = 0
for n = 1 to N do {
set all Ti(n) = Di*(1+Qi(n-1))
set R(n) = sum of {Ti(n)}
set X(n) = n/(R(n)+Z)
set all Qi(n) = X(n)*Ti(n)
}

exit

Alternate Form MVA:

Define Residence Time Ti(n) = ViRi(n)

47

© 2019, Peter J. Denning

n

0

1

2

3
...

Q1 ... QKT1 ... TK

K+1 K+2

0 ... 0

1 ... K K+3 ... 2K+2

Having filled in one row, the algorithm
fills in values in the next row in the order

indicated by the numbers 1, ..., 2K+2.

When done, the R-column contains
the complete curve R(n).

Same for X-column.

R X

48

© 2019, Peter J. Denning

Note that X approaches
a saturation value,

1/D1 = 0.5

Note that R approaches
a saturation line,
n*Db-Z = 2*n-30

49

© 2019, Peter J. Denning 50

© 2019, Peter J. Denning

Models for Multiprogramming

• In a virtual memory system the number of page
faults generated by a job depends on how much
space allocated to it.

• Crude model: assume the memory of M pages is
equally allocated on average among N jobs; thus
each has an average of M/N pages.

• Then set V2 (visits to paging disk) to F(M/N),
where F is the fault function for the workload.

51

© 2019, Peter J. Denning

• This means D2 is a function of N.
• As N increases, F(M/N) increases (less space), and

D2(N) increases.
• The throughput bound is now min{1/D1,

1/D2(N)}.
• For small N CPU may be bottleneck and X(N) ≤

1/D1.
• For large N, DISK is the bottleneck and X(N) ≤

1/D2(N).

52

© 2019, Peter J. Denning

N

jobs/sec

1/D1

X(N)

1/D2(N)

Bottlenecks explain
thrashing.

Can use the MVA model
to evaluate. To calculate

X(N), set D2=D2(N)
and compute X(n) for

n=1,...,N with that
fixed value of D2. Repeat

for each value of N.

(Model assumes that the
demands are constant
across all rows; fails if

this is not so.)
Optimal level of

multiprogramming occurs
near N that makes

D1 = D2(N)
(if bounds cross).

53

© 2019, Peter J. Denning

Example output from a model in which D2 is
always larger than D1 and thus the bounds do
not cross. However, X(N) still shows a peak
and thrashing. (A(N) is an approximation that
does not work well.)

54

