Processor Multiplexing

Peter J. Denning

© Copyright 2022, Peter J. Denning



Thread

e Trace of instruction pointer through
instruction sequence in an address space

© Copyright 2022, Peter J Denning



Process

e A program in execution on virtual machine
with its own address space and simulated
(virtual) CPU

e Process always contains at least one thread

e Process can contain many threads, all
sharing the same address space

© Copyright 2022, Peter J Denning



Time Sharing

e A method of implementing multiple
threads on a computer

e One CPU multiplexed among threads, for
one time slice at a time

e Creates illusion of independent concurrent
threads all running at slower speeds than
the CPU

© Copyright 2022, Peter J Denning



CPU RAM

SW

Stateword “sw” is the set of CPU

registers that must be saved when
a thread is taken off the CPU.

Includes base B and length L of
allowable memory, instruction

pointer IP, program status word
PSW, and registers

© Copyright 2022, Peter J Denning



CPU

SW

base B+—
length L

CPU can only access RAM
locations B, ...,B+L-1

Otherwise, MEMORY
BOUND ERROR

RAM

workspace

code

data

© Copyright 2022, Peter J Denning




CPU RAM

SW
workspace
'P D e code
 \»
data

Current instruction is at

address ip, within the code
segment of the workspace.

Next instruction is at ip+1,
except if branch

© Copyright 2022, Peter J Denning



CPU RAM

SwW
workspace
code
PSW
data

PSW contains CPU control bits.

PSW includes the kernel mode bit:
only in kernel mode can CPU access
data marked “kernel private” or
execution “kernel only” instructions

PSW includes the interrupt mask,
which specifies which interrupts the
CPU will listen to.

© Copyright 2022, Peter J Denning



CPU RAM

tid SW TCB (Thread Control Blocks)
k
0
timer 1
2
3
tid = ID of running thread E
timer = time remaining in time slice
TCB[k] = snapshot of CPU state of
thread k at last context switch

TCBs in kernel private memory

© Copyright 2022, Peter J Denning



CPU

RAM

tid SW TCBs
2
0
timer 1
10
2
3
thread 2 running on CPU, its TCB[2] has 4
image of sw at start of time slice
timer has 10 ticks remaining

© Copyright 2022, Peter J Denning

10




CPU

tid SW

timer

timer, gone to O, triggers
“time slice end” interrupt

RAM

TCBs

© Copyright 2022, Peter J Denning

11




CPU

RAM

tid SW

timer

TCBs

CPU executes SAVESW,
which copies entire sw
into TCB[2]

© Copyright 2022, Peter J Denning

12




CPU

tid SW

timer

OS selects thread 4 to be
next on CPU

RAM

TCBs

© Copyright 2022, Peter J Denning

13




CPU

tid SW

10

timer i

CPU executes LOADSW,
which copies TCB[4] into the
CPU sw registers

timer set to time-slice value
(here, 10 ticks)

RAM

TCBs

© Copyright 2022, Peter J Denning

14




CPU RAM

tid SW TCBs
4 0
timer 1
10
2
3
4

How did 4 come next after 27

© Copyright 2022, Peter J Denning



CPU RAM
tid SW TCBs Ready List
2
0 4|3
timer 1
10 3
2
3
0
The RL (Ready List) links all processes 4
waiting to run on the CPU 1
The RL descriptor has H (head) and T
(tail) fields
Each TCB has a link field saying which
process follows it in RL

© Copyright 2022, Peter J Denning

16




CPU

tid SW

timer
10

As part of the context switch, the

RL.head goes to tid and its successor

becomes new RL.head

The old RL.tail gets tid as its successor

and tid becomes the new RL.tail

RAM
TCBs Ready List
0 1|2
1
3
2
0
3
2
4

© Copyright 2022, Peter J Denning

17




Context Switching

e Save the current CPU stateword to the process’s
control block

e Select next process from head of RL and update RL

e Load that process’s stateword into the CPU and
start running

SAVESW CYCLE-RL(A)
tid=CYCLE-RL(tid) TCB[RL.tail].link=A
LOADSW RL.tail=A
TCB[A].link=0
B=RL.head

RL.head=TCB[RL.head].link
RETURN B

© Copyright 2022, Peter J Denning 18




Round Robin Scheduling

e Objective: time slice end interrupt switches CPU
to next ready process

e T =time slice = max time until context switch

e Time slide end interrupt

activates this routine: disable
SAVESW

settimer=T
tid=CYCLE-RL(tid)
LOADSW

enable

return

© Copyright 2022, Peter J Denning



Process O

e Think of a scenario that leaves RL empty. What
happens?

e QOur algorithms will leave RL(head,tail)=(0,0).
Next context switch goes to process 0.

e Process 0 is a special idling process that runs
when there are no others (e.g., a screensaver).

e When a process re-enters RL after wakeup,
process O will be preempted.

© Copyright 2022, Peter J Denning 20



Summary

Each thread represented by its CPU stateword in
a kernel array of TCBs

Context switch saves CPU sw and replaces it with
the sw of next ready thread

Timer interrupt cycles the ready list to the next
thread

Process 0, always at end of RL, runs if RL empty

© Copyright 2022, Peter J Denning

21



