
Processor Multiplexing

Peter J. Denning

© Copyright 2022, Peter J. Denning

Thread

• Trace of instruction pointer through
instruction sequence in an address space

2
© Copyright 2022, Peter J Denning

Process

• A program in execution on virtual machine
with its own address space and simulated
(virtual) CPU

• Process always contains at least one thread
• Process can contain many threads, all

sharing the same address space

3
© Copyright 2022, Peter J Denning

Time Sharing

• A method of implementing multiple
threads on a computer

• One CPU multiplexed among threads, for
one time slice at a time

• Creates illusion of independent concurrent
threads all running at slower speeds than
the CPU

4
© Copyright 2022, Peter J Denning

CPU RAM

sw

Stateword “sw” is the set of CPU
registers that must be saved when
a thread is taken off the CPU.

Includes base B and length L of
allowable memory, instruction
pointer IP, program status word
PSW, and registers

© Copyright 2022, Peter J Denning
5

CPU RAM

base B
workspace

code

data

sw

length L

L

B

CPU can only access RAM
locations B,…,B+L-1

Otherwise, MEMORY
BOUND ERROR

© Copyright 2022, Peter J Denning 6

CPU RAM

ip
workspace

code

data

sw

Current instruction is at
address ip, within the code
segment of the workspace.

Next instruction is at ip+1,
except if branch

© Copyright 2022, Peter J Denning 7

CPU RAM

PSW

workspace
code

data

sw

PSW contains CPU control bits.
PSW includes the kernel mode bit:
only in kernel mode can CPU access
data marked “kernel private” or
execution “kernel only” instructions
PSW includes the interrupt mask,
which specifies which interrupts the
CPU will listen to.

© Copyright 2022, Peter J Denning 8

CPU RAM

timer

tid
k

sw TCB (Thread Control Blocks)

0

1

2

3

4tid = ID of running thread

timer = time remaining in time slice

TCB[k] = snapshot of CPU state of
thread k at last context switch

TCBs in kernel private memory

© Copyright 2022, Peter J Denning 9

CPU RAM

timer

tid
2

10

sw TCBs

0

1

2

3

4thread 2 running on CPU, its TCB[2] has
image of sw at start of time slice

timer has 10 ticks remaining

© Copyright 2022, Peter J Denning 10

CPU RAM

timer

tid
2

0

sw TCBs

0

1

2

3

4
timer, gone to 0, triggers
”time slice end” interrupt

© Copyright 2022, Peter J Denning 11

CPU RAM

timer

tid

2

0

sw TCBs

0

1

2

3

4
CPU executes SAVESW,
which copies entire sw
into TCB[2]

© Copyright 2022, Peter J Denning 12

CPU RAM

timer

tid

4

0

sw TCBs

0

1

2

3

4

OS selects thread 4 to be
next on CPU

© Copyright 2022, Peter J Denning 13

CPU RAM

timer

tid
4

10

sw TCBs

0

1

2

3

4CPU executes LOADSW,
which copies TCB[4] into the
CPU sw registers

timer set to time-slice value
(here, 10 ticks)

© Copyright 2022, Peter J Denning 14

CPU RAM

timer

tid

4

10

sw TCBs

0

1

2

3

4

How did 4 come next after 2?

© Copyright 2022, Peter J Denning 15

TCBs

0

1

2

3

4

CPU RAM

timer

tid

2

10

34
Ready Listsw

3

0

1
The RL (Ready List) links all processes
waiting to run on the CPU

The RL descriptor has H (head) and T
(tail) fields

Each TCB has a link field saying which
process follows it in RL

© Copyright 2022, Peter J Denning 16

CPU

timer

tid

4

10

sw TCBs

2

4

RAM

21
Ready List

0

1

3

3

0

2

As part of the context switch, the
RL.head goes to tid and its successor
becomes new RL.head

The old RL.tail gets tid as its successor
and tid becomes the new RL.tail

© Copyright 2022, Peter J Denning 17

Context Switching

• Save the current CPU stateword to the process’s
control block

• Select next process from head of RL and update RL
• Load that process’s stateword into the CPU and

start running
SAVESW

tid=CYCLE-RL(tid)
LOADSW

CYCLE-RL(A)
TCB[RL.tail].link=A
RL.tail=A
TCB[A].link=0
B=RL.head
RL.head=TCB[RL.head].link

RETURN B

18© Copyright 2022, Peter J Denning

Round Robin Scheduling

• Objective: time slice end interrupt switches CPU
to next ready process

• T = time slice = max time until context switch
• Time slide end interrupt

activates this routine: disable
SAVESW
set timer = T
tid=CYCLE-RL(tid)
LOADSW
enable
return

19© Copyright 2022, Peter J Denning

Process 0

• Think of a scenario that leaves RL empty. What
happens?

• Our algorithms will leave RL(head,tail)=(0,0).
Next context switch goes to process 0.

• Process 0 is a special idling process that runs
when there are no others (e.g., a screensaver).

• When a process re-enters RL after wakeup,
process 0 will be preempted.

© Copyright 2022, Peter J Denning 20

Summary

• Each thread represented by its CPU stateword in
a kernel array of TCBs

• Context switch saves CPU sw and replaces it with
the sw of next ready thread

• Timer interrupt cycles the ready list to the next
thread

• Process 0, always at end of RL, runs if RL empty

© Copyright 2022, Peter J Denning 21

