
Shell and Virtual Machines

Peter J. Denning

© 2022, P. J. Denning

2

Purpose of Shell

• User interface to the kernel

• Responds to single-line commands to run programs

• A command line names a program to be executed
and specifies the files or devices used for its input
and output

– command = name args input output

– if args, input, or output is not specified, default applies

© Copyright 2022, Peter J. Denning

3

Execution of Commands

• Shell parses command line into its four components

• Loads named program into a virtual machine

• Sets up its input and output

• Starts the virtual machine and sleeps

• Virtual machine exit awakens the shell

• Cleans up the virtual machine

• Listens for next command

© Copyright 2022, Peter J. Denning

4

Virtual Machines

• VMs are simulated computers that run programs

• Created and deleted at Level 8

– Shell at Level 9 can call down to Level 8

• All Shell does is determine the contents of the VM and
lets Level 8 run it while Shell sleeps

© Copyright 2022, Peter J. Denning

VM template

5

thr
IN OUT

args
par, sib, chi

AS
undone counter of incomplete children

pointer to address space on disk

parent, sibling, child pointers

arguments list

name of executing thread

pointers to input, output objects

CD
PATH

pointer to the current directory

list of directories to be searched for
executable file matching command name

© Copyright 2022, Peter J. Denning

name args input output

6

thr
IN OUT

args
par, sib, chi

AS
undone

CD
PATH

The Shell at Level 9 initializes a
VM by giving the template
information to Level 8 when it
creates the VM

Shell starts VM, which sets
undone=1 and Shell sleeps

Level 8 then executes the VM
and when it is done EXITs the
VM, which sets undone=0 and
awakens the Shell

© Copyright 2022, Peter J. Denning

Naming a VM

7

IN OUT

args

thr

par, sib, chi

AS

CD

PATH

vmc

undone

The CREATE_VM command at
Level 8 generates a name
encoded as a virtual machine
capability (vmc)

A capability is a unique and
unalterable name generated by
the OS

The Shell refers to the VM with
its vmc name

In Level 8, the virtual machine
is represented internally by an
VM control block formatted
according to VM template

© Copyright 2022, Peter J. Denning

Notation for an executing VM

8

A B

virtual
machine

“sort”

EXAMPLE – USER TYPES SORT COMMAND:

sort A into B

Shell creates VM running “sort” code, with
file A as input and B as output

© Copyright 2022, Peter J. Denning

Examples

The following slides consider examples of
commands a user can type on the shell’s
command lines, and the corresponding
virtual machines (VM) the shell asks the
kernel to set up and execute.

9© Copyright 2022, Peter J. Denning

10

date

keyboard display

“date”

vmc2

Each arrow represents a
capability. Here the IN port
of vmc2 contains a capability
for a keyboard. The OUT port
contains a capability for the
display.

The ”date” code can read bits
from its IN object by the
statement READ(IN). It can
send bits to its OUT object by
the statement WRITE(OUT).

© Copyright 2022, Peter J. Denning

11

date

keyboard display

“date”

vmc2

When the OS is started it creates a
“login” VM (vmc0) attached to keyboard
and display. When a user successfully
types a user name and password, login
creates a “shell” VM (vmc1) and goes to
sleep.

The shell listens to the keyboard. When
the user types the command “date”, the
shell creates a VM (vmc2) running
“date” and goes to sleep.

Thus vmc0 is parent of vmc1, which in
turn is parent of vmc2. The “par” and
“chi” pointers in the VM designate the
parent and child VMs, respectively.

Each VM inherits the IN and OUT
objects of its parent. There is no
conflict because parents sleep until all
their children complete. When “date”
runs, the “shell” and “login” sleep.

“shell”

vmc1

“login”

vmc0

© Copyright 2022, Peter J. Denning

12

date > B

keyboard display
“date”

vmc2

By default, a new VM inherits the
standard IN and OUT of its parent.

Typically IN = keyboard and OUT =
display.

If different IN or OUT is needed, shell
provides capabilities to the alternate
input and output objects.

Here, notation “>B” tells the shell to
place in OUT a capability for file B,
replacing the display capability. The
output of “date” will be go into file B.

The notation “>B” is called an output
redirection.

B

X

© Copyright 2022, Peter J. Denning

13

cat < A

keyboard display
“cat”

vmc2
“cat” is a program that copies its
input directly to its output. Here
the user, with the notation “<A”,
has directed that a capability for
file A be placed in IN, replacing the
keyboard capability.

”cat” will copy the entire contents
of A to the display.

The notation “<A” is called an input
redirection.

A

X

© Copyright 2022, Peter J. Denning

14

cat A B C

keyboard display
“cat”

vmc2

“cat” can also concatenate
(string together) a series of
files specified as arguments.
In this case the code of “cat”
ignores its IN and instead
opens the files A, B, C by
calling the file manager. It
then reads them in turn,
copying their contents to OUT,
which is the display.

“A B C”

© Copyright 2022, Peter J. Denning

15

cat A B C

keyboard display
“cat”

vmc2

When executing, “cat” opens
the files A, B, C by calling the
file manager. It then reads
them in turn, copying their
contents to OUT. This picture
shows the executing “cat”
having opened and read the
three argument files.

Note that the OPEN and READ
commands are downward calls
to the file manager. They are
set up by the “cat” program,
not the shell.

A

“A B C”

B C

OPEN_FILE
READ_FILE

© Copyright 2022, Peter J. Denning

16

cat < A | more

keyboard

display

“cat”

vmc2
pc1 vmc3

“more”

If file A is larger than the display, the user will see many lines scroll by
rapidly until “cat” finishes.

The program “more” chunks the output stream into pieces that fit display
screens and sends one piece at a time; it pauses until the user types any
key. ”more” opens the keyboard and reads it using downward calls to the
keyboard device driver. Note that the READ call on the keyboard is set up
by the “more” programming, not the shell.

A
READ

The pipe “|” symbol tells the shell that a second
VM will process the output of the first. The pipe
is an object that transmits a stream of bits from
one VM’s OUT to the next VM’s IN.

© Copyright 2022, Peter J. Denning

17

cat < testfile | sort -d

keyboard display

“cat”

vmc2

testfile

pc1 vmc3

“sort”
“-d”

This command line copies the contents of “testfile” to its OUT. That
stream is read by “sort” via its IN. “sort” rearranges the lines of the input
into descending alphabetic order (“-d”) of their first words. “sort” sends
that result to the display via its OUT.

© Copyright 2022, Peter J. Denning

18

cat < testfile | sort -d

keyboard display

“cat”

vmc2

testfile

pc1 vmc3

vmc2

“sort”
“-d”

parent
parent

child

sibling

“shell”

Here we show the parent,
child, and sibling pointers
linking the ”cat” and “sort”
VMs together.

The parent can get a list of its
children by following its “child”
pointer to the last child and
then the ”sibling” pointers to
each predecessor child. This is
useful when when the parent
needs to delete all the children
VMs after they have completed
their tasks.

© Copyright 2022, Peter J. Denning

19

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

vmc2

“sort”
“-d”

“shell”

“login”

parent

child

vmc1

After the shell’s children have
quit and been cleaned up, the
shell itself can quit when the
user types the command “exit”.
That awakens its parent,
“login”, which then listens to
the keyboard for a new login.

© Copyright 2022, Peter J. Denning

Summary

• Commands to shell specify a series of one
or more virtual machines in a pipeline

• The parent process (shell) sleeps until all its
children are done

• When a VM pipeline is done, its parent
cleans up by deleting all its component
VMs and pipes, and by closing its open files

20© Copyright 2022, Peter J. Denning

