
The	OS	as	a	Society	of	Processes	
Peter	J.	Denning	
5/25/19	
	
	
	
	

One	of	the	most	important	jobs	of	a	kernel	is	to	manage	the	parallel	execution	of	
many	processes	and	keep	them	from	interfering	with	one	another.		The	central	idea	
is	that	the	operating	system	is	the	orchestrator	of	a	large	number	of	processes.		
Some	of	the	process	are	created	when	users	give	commands	to	the	shell.		Others	are	
permanent,	non-terminating	service	processes	created	by	the	operating	system;	
these	service	processes	are	often	called	daemons,	after	a	half-human,	half-god,	
usually	beneficent	being	extolled	in	Greek	mythology.	

This	view	of	a	system	is	a	sharp	contrast	with	a	program-oriented	view,	which	
would	see	the	system	as	a	large	library	of	programs	to	be	executed	on	command	by	
the	user.		That	view	was	tried	in	very	early	operating	systems,	but	led	to	hopeless	
complexity	in	managing	the	currency	when	multiple	programs	were	started	
independently	by	different	users.	
	

Kernel	and	Processes	

The	kernel	is	a	set	of	OS	routines	that	perform	very	sensitive	functions	such	as	
switching	the	CPU	state,	allocating	memory,	responding	to	interrupt	signals,	
controlling	access	to	files	and	other	digital	objects,	and	managing	virtual	machines.		
Any	kernel	error	can	disrupt	many	users	or	destroy	user	information.		Expert	
system	programmers	design	and	build	kernel	routines;	they	devote	considerable	
effort	to	making	sure	their	code	is	trustworthy,	error-free,	tamper-proof	--	and	fast.	

The	kernel	itself	contains	a	subset	called	the	microkernel,	which	is	a	relatively	
small	part	that	provides	the	most	basic	services	including	interrupts,	CPU	
multiplexing,	basic	I/O,	main	memory	management,	and	message	services	between	
parallel	processes.			The	microkernel	must	be	exceptionally	trustworthy	because	is	
the	only	part	of	the	OS	that	has	unrestricted	access	to	all	the	hardware	and	memory.	

OS	and	hardware	designers	jointly	developed	a	common	means	to	restrict	access	
to	parts	of	the	hardware	and	memory.		They	invented	two	execution	modes	for	the	
CPU:	a	privileged	kernel	mode	(access	to	everything)	and	non-privileged	user	mode	
(access	only	to	non-sensitive	areas	of	memory	and	non-sensitive	instructions).		The	
OS	automatically	places	the	CPU	into	the	kernel	mode	when	a	user	process	calls	a	
kernel	routine,	and	restores	user	mode	when	that	kernel	routine	returns	control.		In	
the	user	mode,	some	CPU	instructions	are	off	limits,	for	example	those	that	switch	
the	CPU	state,	change	the	boundaries	of	a	memory	region,	or	respond	to	signals	
from	I/O	devices.	

The	OS	provides	two	interfaces	for	users.		The	more	visible	one	is	the	graphical	
user	interface	(GUI),	which	provides	windows,	desktop,	icons,	mouse,	drag-and-



drop,	and	other	familiar	user	functions.		The	less	visible	one	is	the	command-line	
interface,	or	shell,	which	interacts	directly	with	the	kernel	via	one-line	text	
commands.		Most	general-purpose	users	work	via	the	GUI	as	it	provides	a	consistent	
universal	interface	to	any	program.		Most	system	programmers	and	network	
engineers	work	with	the	shell	because	it	is	very	compact	and	fast	for	those	who	
know	the	shell	command	set.		Moreover,	the	tools	and	programs	they	use	are	
tailored	to	this	compact	text-based	interface.		Although	for	general	purpose	users	
the	GUI	is	far	easier	to	use	than	the	shell,	it	is	no	more	powerful	because	every	GUI	
action	translates	into	a	command	line	equivalent	–	for	example,	clicking	on	a	file	
icon	is	ultimately	invokes	the	same	system	call	as	typing	a	command	open(file).	

When	a	user	requests	the	OS	to	run	a	program,	the	OS	creates	a	process	for	the	
program.			A	process	autonomously	executes	a	particular	program	within	the	
resource	limits	granted	by	the	OS.		Each	user	can	create	many	processes.		The	kernel	
multiplexes	the	CPU	among	the	existing	processes,	thereby	allowing	them	to	
proceed	concurrently.		Note	that	concurrent	refers	to	what	users	see,	an	illusion	
programs	running	of	simultaneously.		Despite	that	illusion	the	hidden	mechanisms	
of	the	kernel	execute	the	processes	of	the	programs	serially	in	small	time	slices,	one	
after	another.	

To	manage	all	the	behind	the	scenes	tasks	supporting	the	users	programs	the	OS	
is	dependent	on	many	additional	interacting	processes	owned	by	the	OS.		This	
overall	organization	has	been	characterized	as	a	“society	of	cooperating	processes”.		
Most	of	the	processes	you	see	in	the	process	control	panel	are	non-terminating;	they	
are	ever	ready	to	provide	services	on	request	to	other	processes.		The	remainder	of	
the	processes,	particularly	those	implementing	transactional	user	commands,	are	
terminating	processes	–	they	quit	after	performing	the	specific	tasks	they	were	
invoked	to	perform.		The	set	of	all	currently	executing	processes	constitutes	the	
“society”.		The	society	as	a	whole	is	designed	to	operate	continuously	and	is	
restarted	(rebooted)	only	occasionally.		The	idea	of	a	continuously-running	society	
of	processes	is	a	sharp	contrast	to	the	idea	of	a	library	of	programs,	which	run	when	
called	by	a	user	and	terminate	when	their	jobs	are	done.	

	
Where	Do	Processes	Come	From?	

The	non-terminating	service	processes	are	created	by	the	OS	when	it	is	booting	
up,	from	a	list	of	service	processes.	

One	of	these	system	processes	is	login,	which	asks	a	user	at	a	workstation	for	
credentials.		On	validation	of	credentials,	login	creates	a	shell system	process	
that	interacts	with	the	user	via	the	keyboard	(for	input)	and	display	(for	output).		
The	user	types	a	command	line	to	the	shell,	specifying	a	pipeline	(series)	of	one	or	
more	processes	that	carry	out	the	command.		The	OS	kernel	creates	and	activates	
those	as	children	(subordinate)	processes.		The	shell	goes	to	sleep	until	all	its	
children	complete,	and	then	presents	the	response	to	the	user.	

	



What	is	a	Process?	
You	can	visualize	a	process	as	a	program	in	execution	in	a	private	memory	

region.		A	non-terminating	process	is	a	giant	loop	that	starts	at	a	homing	position	
waiting	for	a	request	to	arrive.		The	arrival	wakes	up	the	process,	which	then	
performs	the	task	specified	by	the	parameters	of	the	request.		When	done	it	returns	
to	its	homing	position.	

A	terminating	process	has	a	start	position	(entry	point)	that	is	like	the	homing	
position	except	the	process	does	not	cycle	back.		Instead	it	performs	the	task	
specified	by	the	parameters	of	the	request	and,	when	it	is	done,	it	executes	an	exit	
kernel	call.		The	exit	terminates	the	process	and	notifies	its	parent	of	its	
completion.	

Within	a	process,	the	path	followed	by	the	CPU	executing	instructions	is	called	a	
thread	(or	sometimes	execution	stream).		Most	operating	systems	allow	processes	to	
contain	multiple	threads.		Multiple	threads	enable	parallel	execution	of	some	
subtasks,	thereby	speeding	up	process	completion	time.		All	of	a	process’	threads	
share	the	single	memory	space	of	the	process.		System	(and	application)	
programmers	have	to	face	the	challenge	of	ensuring	that	the	threads	cooperate	and	
do	not	interfere	with	each	other.	

	

What	Does	the	Shell	Expect	of	the	Kernel?	
From	the	sketch	of	how	a	shell	creates	processes	to	carry	out	tasks	specified	in	

command	lines,	we	can	see	four	main	functions	the	shell	expects	of	the	kernel.	

1.		Process	Creation,	Management,	and	Deletion	
The	OS	creates	a	“virtual	machine”	to	run	an	executable	program.		The	virtual	

machine	executing	a	program	is	called	a	process.	
Level	8	(see	the	OS	map)	houses	the	functions	for	process	management.		The	

create_process	command	inserts	the	executable	code	into	a	standard	process	
template	and	then	attaches	the	resulting	process	to	the	ready	list	for	execution.		The	
delete_process	command	unlinks	the	template	and	erases	it.		The	parameters	of	
the	create-process	command	include	the	standard	input	and	output,	which	are	
pointers	to	info-objects	(see	below).		The	accompanying	virtual	machine	notes	lay	
out	details	of	how	the	shell	constructs	the	virtual	machines	and	their	inputs	and	
outputs,	corresponding	to	a	shell	command.	

2.		Info	Objects	and	Directories	
Processes	use	info	objects	(information	objects)	for	their	inputs	and	outputs.		

Info	objects	are	typically	files,	devices,	and	pipes.		A	file	is	a	named	entity	containing	
a	sequence	of	bits;	it	can	be	accessed	for	reading	(copying	bits	out)	or	writing	
(copying	bits	in).		A	device	is	a	hardware	entity	used	either	for	input	(e.g.,	keyboard,	
mouse)	or	output	(e.g.,	display,	printer)	but	not	both.		A	pipe	is	a	transmission	
channel	that	connects	the	output	of	one	process	to	the	input	of	another.		We	use	the	



term	stream	for	the	bits	in	info	objects:	a	file	contains	a	stream,	an	input	device	
generates	a	stream,	an	output	device	absorbs	a	stream,	and	a	pipe	communicates	a	
stream.	

Every	process	has	a	single	standard	input	port	IN,	and	standard	output	port	OUT.		
Any	info	object	can	be	connected	to	IN	or	OUT.		If	the	process	code	says	READ(IN)	
the	OS	feeds	it	the	stream	of	its	IN	object.		If	the	process	code	says	WRITE(OUT),	
the	OS	feeds	a	stream	to	its	OUT	object.	

A	directory	is	a	table,	each	entry	of	which	associates	a	symbolic	name	chosen	by	
the	user	with	an	internal	pointer	to	an	info	object.		Directories	permit	users	to	use	
and	organize	familiar	names	for	objects;	the	associated	pointer	allows	the	OS	to	find	
the	object.		Directories	can	point	to	other	directories	and	be	arranged	into	a	
hierarchy,	often	called	directory	tree.		A	directory	points	to	info	objects,	but	is	not	
itself	an	info	object	and	it	cannot	be	linked	to	a	process’s	IN	or	OUT	ports.	

3.		Messages	

The	OS	provides	a	message	system	that	allows	processes	to	send	messages	to	
each	other	rapidly	and	efficiently.		The	message	system	is	called	interprocess	
communication	(IPC).		Messages	are	mostly	used	to	request	services	from	
nonterminating	service	processes,	and	to	receive	back	the	responses.		Messages	can	
also	be	sent	over	the	network	to	service	processes	on	other	computers,	via	an	
interface	called	remote	procedure	call.		The	network	protocol	stack	is	therefore	part	
of	the	IPC	system.	

4.		Memory	Management	

Each	process	is	assigned	a	private	region	of	the	main	memory	(usually	RAM)	for	
its	exclusive	use.		The	OS	defines	the	region	with	a	descriptor	(base,	length)	and	
does	not	permit	the	CPU	to	access	outside	the	currently	designated	region	during	
execution.		When	a	process	is	loaded	into	memory	for	execution,	a	linker	program	
gathers	all	its	program	modules	and	library	components	into	a	single,	executable	
file.		That	executable	file	is	joined	with	a	stack	to	form	the	address	space	of	the	
process.		Thus,	the	process’	address	space	holds	all	of	a	process’	instructions	and	
data,	including	copies	of	OS	library	code	the	process	requires	to	execute.		The	
operating	system	constructs	a	memory	map	to	associate	addresses	with	physical	
storage	locations	in	the	computer’s	main	memory.	

Often	there	is	insufficient	main	memory	space	to	hold	the	entire	address	space.		
The	operating	system	stores	the	whole	space	as	a	file	in	the	secondary	memory,	and	
based	on	usage,	loads	subsets	into	the	main	memory.		The	memory	map	indicates	
which	addresses	are	loaded	and	which	are	not.		The	operating	system	maintains	
consistency	between	the	main	memory	set	and	the	address	space	file	by	copying	
back	any	segments	that	were	modified.		Thus,	the	main	memory	contents	can	vary	
and	the	address	space	file	is	always	the	master	copy.	

Authorized	users	are	allocated	space	on	the	secondary	memory	(commonly	
referred	to	as	DISK	or	HD	even	though	rotating	disks	are	in	decline)	to	hold	their	



files	permanently.		By	default	only	the	owner	can	read	or	write	a	file,	but	the	owner	
can	grant	permission	to	others.	

5.		Concurrency	Control	
One	of	the	most	common	things	processes	do	when	they	interact	is	synchronize	

by	sending	and	receiving	signals.		Synchronize	means	that	the	receiving	process	
cannot	proceed	past	a	checkpoint	until	an	expected	signal	is	received	from	a	sending	
process	–	thus	guaranteeing	that	the	receiver	cannot	get	ahead	of	a	critical	
checkpoint	in	the	sender.		For	example,	a	service	process	waits	until	a	user	process	
sends	a	signal	requesting	service,	and	then	the	requesting	process	waits	until	the	
service	process	returns	a	response.		The	kernel	provides	tools	for	synchronization,	
enabling	parallel	processes	to	successfully	navigate	interprocess	procedure	calls,	
locking	shared	resources,	making	processes	run	in	a	prescribed	order	(serializing),	
and	avoiding	deadlocks.		The	semaphore	is	the	most	used	synchronization	tool	
within	the	OS	kernel.	

Another	thing	the	kernel	does	for	processes	is	to	multiplex	the	available	CPUs	
among	them.		Multiplex	means	to	cycle	the	CPU	among	a	set	of	processes,	giving	each	
an	interval	of	execution	called	a	time	slice.		This	gives	the	illusion	that	the	processes	
are	executing	in	parallel.		The	dispatcher	is	the	portion	of	the	kernel	that	does	this	
and	typically	uses	some	combination	of	round-robin	scheduling	(to	determine	the	
order	of	execution)	and	context-switching	(to	safely	transition	the	CPU	to	the	next	
process).	

6.		Protected	entry	
The	set	of	all	the	function-names	appearing	in	the	user	interfaces	of	the	OS	levels	

is	the	kernel’s	API	(user	interface).		The	kernel	programs	implementing	the	
functions	are	made	by	highly	skilled	professional	systems	programmers	who	have	
gone	to	great	lengths	to	assure	their	programs	are	reliable,	correct,	and	trustworthy.		
Their	claims	of	reliability,	correctness,	and	trust	are	all	based	on	the	assumption	
that	when	any	kernel	routine	is	called,	the	CPU	always	starts	executing	instructions	
at	its	entry	point	(designated	first	instruction).		Operating	systems	include	special	
mechanisms	to	assure	that	kernel	calls	always	start	executing	at	their	designated	
entry	points.	

A	common	practice	in	systems	programs	is	to	begin	with	validity	checks	on	the	
incoming	parameter	values.		If	any	parameter	fails	to	pass	the	test,	the	program	will	
immediately	return	an	error	code	to	its	caller	and	will	not	attempt	to	execute	the	
kernel	function.			If	a	caller	could	bypass	the	validity	checks	by	tricking	the	CPU	to	
start	executing	instructions	after	the	checks,	the	caller	could	provide	invalid	data	
and	cause	the	kernel	function	to	malfunction.		Operating	systems	prevent	this	from	
happening	by	forcing	all	kernel	calls	to	start	with	their	entry	points.	

Forced	entry	is	usually	done	with	a	kernel	entry	directory	that	lists	function	
names	and	their	kernel	entry	points.		The	directory	is	private	to	the	OS.		A	caller	
cannot	call	directly,	but	must	ask	the	OS	to	make	the	call	on	its	behalf.		For	example,	



a	process	wanting	to	call	open-file	will	tell	the	operating	system	to	call	open-file,	and	
the	OS	will	get	the	correct	entry	point	from	the	directory.	

	
Resources	

Attached	slide	sets:	

Virtual	machines	–	an	overview	of	the	process	structures	that	implement	
commands	–	start	with	examples	of	simple	commands	and	what	we	want	them	
to	do,	then	depict	with	VM	diagrams	–	define	create	and	delete	kernel	commands	
for	VMs	consistent	with	usage	in	the	shell	description	
Shell	–	an	overview	of	the	way	the	shell	recognizes	commands	

Time-sharing	–	an	overview	of	how	basic	multiplexing	works	to	allow	a	set	of	
processes	to	share	a	CPU	and	make	progress	in	parallel.	

	


