
30 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

V
viewpoints

The Profession of IT
Fifty Years of
Operating Systems
A recent celebration of 50 years of operating system research yields
lessons for all professionals in designing offers for their clients.

 ˲ Interactive systems: many users on
multiple systems constantly interact-
ing, communicating, and sharing re-
sources (1960–1975);

 ˲ Desktop systems: Immersive per-
sonalizable distributed systems to man-
age work in an office (1975–2005); and

 ˲ Cloud-mobile systems: Immersive
personalizable systems to manage all
aspects of one’s life, work, and social
relations (2005 onward)

The accompanying figure depicts a
memory layout of an early batch oper-
ating system.

The Great Confluence of 1965
The very first operating systems were
little more “manual operating proce-
dures” for the first computers in the
1950s. These procedures established a
queue of jobs waiting to be executed;
an operator put the jobs on the ma-
chine one by one and returned output
to the requesting users. These pro-
cedures were soon automated in the
late 1950s; IBM’s 1401 front end to the
IBM 709x number crunchers was the
best known of commercial “spooling”
systems. From that time on, computer
system engineers became interested
in automating all aspects of comput-
ing including in-execution job sched-
uling, resource allocation, and user
interaction, and pre-execution job de-
sign, preparation, testing, and debug-
ging. By 1965, their experiments yield-
ed a set of eight principles that became
the starting point for a new generation
of operating systems:

O
P E R AT I N G S Y S T E M S A R E a
major enterprise within
computing. They are host-
ed on a billion devices
connected to the Internet.

They were a $33 billion global market
in 2014. The number of distinct new
operating systems each decade is
growing, from nine introduced in the
1950s to an estimated 350 introduced
in the 2010s.a

Operating systems became the
subject of productive research in late
1950s. In 1967, the leaders of operating
systems research organized the SOSP
(symposium on operating systems prin-
ciples), starting a tradition of biannual
SOSP conferences that has continued
50 years. The early identification of op-
erating system principles crystallized
support in 1971 for operating systems
to become part of the computer science
core curriculum (see the sidebar).

In October 2015, as part of SOSP-
25, we celebrated 50 years of OS
history. Ten speakers and a panel
discussed the evolution of major seg-
ments of OS, focusing on the key in-
sights that were eventually refined
into OS principles (see http://sigops.
org/sosp/sosp15/history). A video
record is available in the ACM Digi-
tal Library. I write this summary not
only because we are all professional
users of operating systems, but also
because these 50 years of operating

a See https://en.wikipedia.org/wiki/Timeline_
of_operating_systems

systems research yield important les-
sons for all computing professionals
who design systems for customers.

Timeline
A remarkable feature of our history
is that the purposes and functions of
an operating system have changed so
much, encompassing four stages:

 ˲ Batch systems: one job at a time
(1950–1960);

DOI:10.1145/2880150 Peter J. Denning

Memory layout of an early batch operating
system.

Interrupt
processing

Device
drivers

M
on

it
or

B
ou

nd
ar

y

Job
sequencing

Control language
interpreter

User
program

area

http://dx.doi.org/10.1145/2880150

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 31

viewpoints

V
viewpoints

 ˲ Interactive computing (time-sharing)
 ˲ Hierarchical file systems
 ˲ Fault tolerant structures
 ˲ Interrupt systems
 ˲ Automated overlays (virtual memory)
 ˲ Multiprogramming
 ˲ Modular programming
 ˲ Controlled information sharing

The MIT Multics project (http://
multicians.org) and the IBM System
360 project were the first to bring
forth systems with all these charac-
teristics; Multics emphasized inter-
activity and community, System 360
a complete line of low to high-end
machines with a common instruc-
tion set. Moreover, Multics used a
high-level language (a subset of PL/I)
to program the operating system be-
cause the designers did not want to
tackle a system of such size with as-
sembly language. Developed from
1964 to 1968, these systems had an
enormous influence later genera-
tions of operating systems.

Dennis Ritchie and Ken Thomp-
son at Bell Labs loved the services
available from Multics, but loathed
the size and cost. They extracted the
best ideas and blended with a few of
their own to produce Unix (1971),
which was small enough to run on
a minicomputer and was written in
a new portable language C that was
close enough to code to be efficient
and high level enough to manage OS
program complexity. Unix became a
ubiquitous standard in the configura-
tion interfaces of operating systems
and in the middleware of the Internet.
In 1987, Andy Tanenbaum released
Minix, a student-oriented version of
Unix. His student, Linus Torvalds,
launched Linux from Minix.

OS Principles
By the late 1960s OS engineers be-
lieved they had learned a basic set
of principles that led to reliable and
dependable operating systems. The
SOSP institutionalized their search
for OS principles. In my own work, I
broadened the search for principles
to include all computing3,4 (see http://
greatprinciples.org).

I am often asked, “What is an OS (or
CS) principle?” A principle is a state-
ment either of a law of computing (Box
1) or of design wisdom for computing
(Box 2).

Box 1. Examples of Laws

Semaphore invariant c(t) = min(a(t), s(t)+I) [5]

Space-time law: memory used = (spacetime per
job)x(system throughput)

Mean value equations for throughput and
response time in a queueing network

Locality principle

Box 2. Examples of Design Wisdom

Information hiding

Levels or layers of abstraction

Atomic transactions

Virtual machines

Least privilege

Of the many possible candidates for
principle statements, which ones are
worthy of remembering? Our late col-
league Jim Gray proposed a criterion:
A principle is great if it is “Cosmic”—it
is timeless and incredibly useful. Oper-
ating systems contributed nearly one-
third of the 41 great principles listed
in a 2004 survey (see http://greatprinci-
ples.org). The accompanying table gives
examples—OS is truly a great contribu-
tor to the CS field.

Lessons
As I looked over the expanse of results
achieved by the over 10,000 people who
participated in OS research over the
past 50 years, I saw some lessons that
apply to our daily work as professionals.

Even though it seems that research
is academic and does not apply to
professional work, a closer look at

Both the researcher
and professional
search for answers.
The one pushes
the frontier of
knowledge,
the other makes
systems more
valuable
to customers.

Founding
History
My first volunteer position in ACM was
editor of the SICTIME newsletter in
1968. SICTIME was the special interest
committee on time-sharing, a small
group of engineers and architects of
experimental time-sharing systems
during the 1960s. Jack Dennis (SICTIME)
and Walter Kosinski (SICCOMM)
organized the first symposium on
operating systems principles (SOSP)
in 1967 to celebrate the emergence
of principles from the experimental
systems and to promote research that
would clearly articulate and validate
future operating system principles. It
is significant that they recognized the
synergy between operating systems and
networks before the ARPANET came
online; Larry Roberts presented the
ARPANET architecture proposal at the
conference. The conference inspired
such enthusiasm that the leaders
of SICTIME wanted to convert their
SIC to a SIG (special interest group);
they recruited me to spearhead the
conversion. I drafted a charter and
bylaws and proposed to rename the
group to operating systems because
time-sharing was too narrow. The ACM
Council approved SIGOPS in 1969
and ACM President Bernard Galler
appointed me as the first chair. One of
my projects was to organize a second
SOSP at Princeton University in 1969.
That conference also inspired much
enthusiasm, and every two years since
then SIGOPS has run SOSP, which
evolved into the premier conference on
operating systems research. SIGOPS
has identified 48 Hall of Fame papers
since 1966 that had a significant shaping
influence on operating systems (see
http://www.sigops.org/award-hof.html).

Following these successes, in 1970
Bruce Arden, representing COSINE
(computer science in engineering), an
NSF-sponsored project of the National
Academy of Engineering, asked me
to chair a task force to propose an
undergraduate core course on operating
system principles. A non-math core
course was a radical idea at the time, but
the existence of so many OS principles
gave them confidence it could be
done. Our small committee released
its recommendation in 1971.1 Many
computer science and engineering
departments adopted the course and
soon there were several textbooks. I wrote
a follow-on paper in 1972 that explained
the significance of the paradigm shift of
putting systems courses in the CS core.2
After that, ACM curriculum committees
began to include other systems courses in
the core recommendations. The place of
OS in the CS core has gone unchallenged
for 45 years.

 —Peter J. Denning

32 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

viewpoints

The results of their work were almost
always systems that others could use and
experiment with. After the messy pro-
cess of learning what worked, they wrote
neat stories about what they learned.
Before they produced theories, they first
produced prototypes and systems.

Professionals do this too. When
sitting around the fire spinning yarns
of what they did for their customers,
they too tell neat stories and graciously
spare their clients their struggles with
their designs.

References
1. COSINE Task Force 8 report. An Undergraduate

Course on Operating Systems Principles. National
Academy of Engineering, 1971; http://denninginstitute.
com/pjd/PUBS/cosine-8.pdf

2. Denning, P. Operating systems principles and
undergraduate computer science curricula. In
Proceedings of AFIPS Conference. 40 (SJCC), 1972,
849–855; http://denninginstitute.com/pjd/PUBS/
OSprinciples.pdf

3. Denning, P. Great principles of computing. Commun.
ACM 46, 11 (Nov. 2003), 15–20.

4. Denning, P. and Martell, C. Great Principles of
Computing. MIT Press, 2015.

5. Habermann, A.N. Synchronization of communicating
processes. Commun. ACM 15, 3 (Mar. 1972), 171–176.

Peter J. Denning (pjd@nps.edu) is Distinguished
Professor of Computer Science and Director of the
Cebrowski Institute for information innovation at the
Naval Postgraduate School in Monterey, CA, is Editor
of ACM Ubiquity, and is a past president of ACM.
The author’s views expressed here are not necessarily
those of his employer or the U.S. federal government.

Copyright held by author.

what actually happens reveals a great
deal of overlap. Both the researcher
and the professional seek answers
to questions. The one aims to push
the frontier of knowledge, the other
to make a system more valuable to a
customer. If we want to find out what
it is like to explore a question, our
main sources are academic research
papers; there are very few written
professional case studies. The typi-
cal research paper tells a tidy story
of an investigation and a conclusion.
But the actual investigation is usually
untidy, uncertain, and messy. The un-
certainty is a natural consequence of
numerous contingencies and unpre-
dictable circumstances through which
the investigator must navigate. We can
never know how a design proposal will
be received until we try it and see how
people react.

You can see this in the presenta-
tions of the speakers at the conference,
as they looked back on their struggles
to find answers to the questions they
asked. They were successful because
they allowed themselves to be begin-
ners constantly searching for what
works and what does not work: build-
ing, tinkering, and experimenting.
From this emerged many insights.

A Fistful of Bitcoins:
Characterizing
Payments Among
Men with No Names

Security Multiparty
Computations
on Bitcoin

Forty Years
of Suffix Trees

Does the Use of Color
on Business Dashboards
Affect Decision Making?

Multimodal Biometrics
for Enhanced
Mobile Device Security

Beyond Viral

Why Logical Clocks
Are Easy

More Encryption
Means Less Privacy

How SysAdmins
Devalue Themselves

Plus the latest news
about automating
proofs, mobile-assistive
technologies, and
search engine biases.

 C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S Examples of computing principles contributed by operating systems.

Process A program in execution on a virtual processor. A process can be started,
stopped, scheduled, and interacted with. Operating systems and networks
comprise many interacting processes that never terminate.

Interactive
Computation

Processes can receive inputs or generate outputs at any time—contrasts
with the Turing view that processes get all their input at the start
and produce all their output at the end. Interactive computations can
implement functions that non-interactive computations cannot.

Concurrency controls To avoid pathologies such as race conditions, buffer overflows, and deadlocks,
processes need explicit mechanisms to wait for and receive signals.

Locality Processes use small subsets of their address spaces for extended
periods. Caches and memory managers detect working sets, position
them for significantly improved performance, and protect them to
prevent thrashing.

Naming and mapping Objects can be assigned location-independent names; mappers translate
names to object physical locations when needed. Hierarchical naming
systems (such as directories and URLs) scale to very large name spaces.

Protection and Sharing The global name space is visible to everyone (for example, the space of
all Web URLs). Objects are by default accessible only to their owners.
Owners explicitly state who is allowed to read or write their objects.

System Languages System programming languages yield systems that are well structured,
more easily verified, and fault tolerant.

Levels of Abstraction System software can be simplified and verified by organizing the functions
as a hierarchy that can make only downward calls and upward returns.

Virtual machines A set of related functions can be implemented as a simulation of a
machine whose interface is an “instruction set” and whose internal
structure and data are hidden.

