
30    COMMUNICATIONS OF THE ACM    |   MARCH 2016  |   VOL.  59  |   NO.  3

V
viewpoints

The Profession of IT 
Fifty Years of 
Operating Systems 
A recent celebration of 50 years of operating system research yields 
lessons for all professionals in designing offers for their clients.

 ˲ Interactive systems: many users on 
multiple systems constantly interact-
ing, communicating, and sharing re-
sources (1960–1975);

 ˲ Desktop systems: Immersive per-
sonalizable distributed systems to man-
age work in an office (1975–2005); and

 ˲ Cloud-mobile systems: Immersive 
personalizable systems to manage all 
aspects of one’s life, work, and social 
relations (2005 onward)

The accompanying figure depicts a 
memory layout of an early batch oper-
ating system.

The Great Confluence of 1965
The very first operating systems were 
little more “manual operating proce-
dures” for the first computers in the 
1950s. These procedures established a 
queue of jobs waiting to be executed; 
an operator put the jobs on the ma-
chine one by one and returned output 
to the requesting users. These pro-
cedures were soon automated in the 
late 1950s; IBM’s 1401 front end to the 
IBM 709x number crunchers was the 
best known of commercial “spooling” 
systems. From that time on, computer 
system engineers became interested 
in automating all aspects of comput-
ing including in-execution job sched-
uling, resource allocation, and user 
interaction, and pre-execution job de-
sign, preparation, testing, and debug-
ging. By 1965, their experiments yield-
ed a set of eight principles that became 
the starting point for a new generation 
of operating systems:

O
P E R AT I N G  S Y S T E M S  A R E  a 
major enterprise within 
computing. They are host-
ed on a billion devices 
connected to the Internet. 

They were a $33 billion global market 
in 2014. The number of distinct new 
operating systems each decade is 
growing, from nine introduced in the 
1950s to an estimated 350 introduced 
in the 2010s.a

Operating systems became the 
subject of productive research in late 
1950s. In 1967, the leaders of operating 
systems research organized the SOSP 
(symposium on operating systems prin-
ciples), starting a tradition of biannual 
SOSP conferences that has continued 
50 years. The early identification of op-
erating system principles crystallized 
support in 1971 for operating systems 
to become part of the computer science 
core curriculum (see the sidebar).

In October 2015, as part of SOSP-
25, we celebrated 50 years of OS 
history. Ten speakers and a panel 
discussed the evolution of major seg-
ments of OS, focusing on the key in-
sights that were eventually refined 
into OS principles (see http://sigops.
org/sosp/sosp15/history). A video 
record is available in the ACM Digi-
tal Library. I write this summary not 
only because we are all professional 
users of operating systems, but also 
because these 50 years of operating 

a See https://en.wikipedia.org/wiki/Timeline_
of_operating_systems

systems research yield important les-
sons for all computing professionals 
who design systems for customers.

Timeline
A remarkable feature of our history 
is that the purposes and functions of 
an operating system have changed so 
much, encompassing four stages: 

 ˲ Batch systems: one job at a time 
(1950–1960);
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Memory layout of an early batch operating 
system.
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 ˲ Interactive computing (time-sharing)
 ˲ Hierarchical file systems
 ˲ Fault tolerant structures
 ˲ Interrupt systems
 ˲ Automated overlays (virtual memory)
 ˲ Multiprogramming
 ˲ Modular programming
 ˲ Controlled information sharing

The MIT Multics project (http://
multicians.org) and the IBM System 
360 project were the first to bring 
forth systems with all these charac-
teristics; Multics emphasized inter-
activity and community, System 360 
a complete line of low to high-end 
machines with a common instruc-
tion set. Moreover, Multics used a 
high-level language (a subset of PL/I) 
to program the operating system be-
cause the designers did not want to 
tackle a system of such size with as-
sembly language. Developed from 
1964 to 1968, these systems had an 
enormous influence later genera-
tions of operating systems.

Dennis Ritchie and Ken Thomp-
son at Bell Labs loved the services 
available from Multics, but loathed 
the size and cost. They extracted the 
best ideas and blended with a few of 
their own to produce Unix (1971), 
which was small enough to run on 
a minicomputer and was written in 
a new portable language C that was 
close enough to code to be efficient 
and high level enough to manage OS 
program complexity. Unix became a 
ubiquitous standard in the configura-
tion interfaces of operating systems 
and in the middleware of the Internet. 
In 1987, Andy Tanenbaum released 
Minix, a student-oriented version of 
Unix. His student, Linus Torvalds, 
launched Linux from Minix.

OS Principles
By the late 1960s OS engineers be-
lieved they had learned a basic set 
of principles that led to reliable and 
dependable operating systems. The 
SOSP institutionalized their search 
for OS principles. In my own work, I 
broadened the search for principles 
to include all computing3,4 (see http://
greatprinciples.org).

I am often asked, “What is an OS (or 
CS) principle?” A principle is a state-
ment either of a law of computing (Box 
1) or of design wisdom for computing 
(Box 2). 

Box 1. Examples of Laws

Semaphore invariant c(t) = min(a(t), s(t)+I) [5]

Space-time law: memory used = (spacetime per 
job)x(system throughput)

Mean value equations for throughput and 
response time in a queueing network

Locality principle

Box 2. Examples of Design Wisdom

Information hiding

Levels or layers of abstraction

Atomic transactions

Virtual machines

Least privilege

Of the many possible candidates for 
principle statements, which ones are 
worthy of remembering? Our late col-
league Jim Gray proposed a criterion: 
A principle is great if it is “Cosmic”—it 
is timeless and incredibly useful. Oper-
ating systems contributed nearly one-
third of the 41 great principles listed 
in a 2004 survey (see http://greatprinci-
ples.org). The accompanying table gives 
examples—OS is truly a great contribu-
tor to the CS field.

Lessons
As I looked over the expanse of results 
achieved by the over 10,000 people who 
participated in OS research over the 
past 50 years, I saw some lessons that 
apply to our daily work as professionals.

Even though it seems that research 
is academic and does not apply to 
professional work, a closer look at 

Both the researcher 
and professional 
search for answers. 
The one pushes  
the frontier of 
knowledge,  
the other makes 
systems more 
valuable  
to customers.

Founding 
History
My first volunteer position in ACM was 
editor of the SICTIME newsletter in 
1968. SICTIME was the special interest 
committee on time-sharing, a small 
group of engineers and architects of 
experimental time-sharing systems 
during the 1960s. Jack Dennis (SICTIME) 
and Walter Kosinski (SICCOMM) 
organized the first symposium on 
operating systems principles (SOSP) 
in 1967 to celebrate the emergence 
of principles from the experimental 
systems and to promote research that 
would clearly articulate and validate 
future operating system principles. It 
is significant that they recognized the 
synergy between operating systems and 
networks before the ARPANET came 
online; Larry Roberts presented the 
ARPANET architecture proposal at the 
conference. The conference inspired 
such enthusiasm that the leaders 
of SICTIME wanted to convert their 
SIC to a SIG (special interest group); 
they recruited me to spearhead the 
conversion. I drafted a charter and 
bylaws and proposed to rename the 
group to operating systems because 
time-sharing was too narrow. The ACM 
Council approved SIGOPS in 1969 
and ACM President Bernard Galler 
appointed me as the first chair. One of 
my projects was to organize a second 
SOSP at Princeton University in 1969. 
That conference also inspired much 
enthusiasm, and every two years since 
then SIGOPS has run SOSP, which 
evolved into the premier conference on 
operating systems research. SIGOPS 
has identified 48 Hall of Fame papers 
since 1966 that had a significant shaping 
influence on operating systems (see 
http://www.sigops.org/award-hof.html).

Following these successes, in 1970 
Bruce Arden, representing COSINE 
(computer science in engineering), an 
NSF-sponsored project of the National 
Academy of Engineering, asked me 
to chair a task force to propose an 
undergraduate core course on operating 
system principles. A non-math core 
course was a radical idea at the time, but 
the existence of so many OS principles 
gave them confidence it could be 
done. Our small committee released 
its recommendation in 1971.1 Many 
computer science and engineering 
departments adopted the course and 
soon there were several textbooks. I wrote 
a follow-on paper in 1972 that explained 
the significance of the paradigm shift of 
putting systems courses in the CS core.2 
After that, ACM curriculum committees 
began to include other systems courses in 
the core recommendations. The place of 
OS in the CS core has gone unchallenged 
for 45 years. 

         —Peter J. Denning
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The results of their work were almost 
always systems that others could use and 
experiment with. After the messy pro-
cess of learning what worked, they wrote 
neat stories about what they learned. 
Before they produced theories, they first 
produced prototypes and systems.

Professionals do this too. When 
sitting around the fire spinning yarns 
of what they did for their customers, 
they too tell neat stories and graciously 
spare their clients their struggles with 
their designs.
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what actually happens reveals a great 
deal of overlap. Both the researcher 
and the professional seek answers 
to questions. The one aims to push 
the frontier of knowledge, the other 
to make a system more valuable to a 
customer. If we want to find out what 
it is like to explore a question, our 
main sources are academic research 
papers; there are very few written 
professional case studies. The typi-
cal research paper tells a tidy story 
of an investigation and a conclusion. 
But the actual investigation is usually 
untidy, uncertain, and messy. The un-
certainty is a natural consequence of 
numerous contingencies and unpre-
dictable circumstances through which 
the investigator must navigate. We can 
never know how a design proposal will 
be received until we try it and see how 
people react.

You can see this in the presenta-
tions of the speakers at the conference, 
as they looked back on their struggles 
to find answers to the questions they 
asked. They were successful because 
they allowed themselves to be begin-
ners constantly searching for what 
works and what does not work: build-
ing, tinkering, and experimenting. 
From this emerged many insights.

A Fistful of Bitcoins: 
Characterizing  
Payments Among  
Men with No Names

Security Multiparty 
Computations  
on Bitcoin

Forty Years  
of Suffix Trees

Does the Use of Color  
on Business Dashboards 
Affect Decision Making?

Multimodal Biometrics  
for Enhanced  
Mobile Device Security

Beyond Viral

Why Logical Clocks  
Are Easy

More Encryption 
Means Less Privacy

How SysAdmins  
Devalue Themselves

Plus the latest news  
about automating  
proofs, mobile-assistive  
technologies, and  
search engine biases.
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S Examples of computing principles contributed by operating systems.

Process A program in execution on a virtual processor. A process can be started, 
stopped, scheduled, and interacted with. Operating systems and networks 
comprise many interacting processes that never terminate.

Interactive  
Computation

Processes can receive inputs or generate outputs at any time—contrasts 
with the Turing view that processes get all their input at the start 
and produce all their output at the end. Interactive computations can 
implement functions that non-interactive computations cannot.

Concurrency controls To avoid pathologies such as race conditions, buffer overflows, and deadlocks, 
processes need explicit mechanisms to wait for and receive signals.

Locality Processes use small subsets of their address spaces for extended  
periods. Caches and memory managers detect working sets, position 
them for significantly improved performance, and protect them to  
prevent thrashing.

Naming and mapping Objects can be assigned location-independent names; mappers translate 
names to object physical locations when needed. Hierarchical naming 
systems (such as directories and URLs) scale to very large name spaces.

Protection and Sharing The global name space is visible to everyone (for example, the space of 
all Web URLs). Objects are by default accessible only to their owners. 
Owners explicitly state who is allowed to read or write their objects.

System Languages System programming languages yield systems that are well structured, 
more easily verified, and fault tolerant. 

Levels of Abstraction System software can be simplified and verified by organizing the functions 
as a hierarchy that can make only downward calls and upward returns.

Virtual machines A set of related functions can be implemented as a simulation of a 
machine whose interface is an “instruction set” and whose internal 
structure and data are hidden.


