
Taming	Complexity	with	Levels	
Peter	J.	Denning	
5/25/19	
	
	
	

To	tame	the	complexity	of	the	kernel,	we	will	arrange	the	software	as	a	series	of	
levels	layered	one	on	top	of	the	next,	like	a	stack	of	blocks.		Each	block	manages	a	
specific	set	of	objects,	such	as	files	or	processes.		Each	block	is	a	small	universe	with	
its	own	logic	that	does	not	depend	on	any	higher	level	and,	although	it	depends	on	
lower	levels,	it	does	not	require	you	to	understand	the	lower	levels.	

The	idea	of	approaching	complex	systems	as	hierarchies	of	levels	is	not	new.		A	
good	place	to	start	to	appreciate	the	power	of	this	way	of	looking	is	with	the	famous	
10-minute	video	“Powers	of	Ten”	by	Charles	and	Ray	Eames.	

http://www.eamesoffice.com/education/powers-of-ten-2/	

The	second	video	on	that	page	is	a	journey	through	three	dozen	different	scales	of	
distance,	starting	with	a	family	having	a	picnic	in	Chicago	seen	through	a	window	1	
meter	on	a	side.		Every	ten	seconds,	the	field	of	view	expands	by	a	factor	of	10.		
Around	1024	the	entire	known	universe	has	shrunk	to	a	single	point	of	light.	

One	of	the	aspects	of	viewing	the	universe	this	way	is	that	we	can	position	
ourselves	at	a	particular	scale	and	develop	explanations	for	phenomena	visible	at	
that	scale,	without	regard	to	the	details	of	other	scales.		In	other	words,	each	scale	is	
a	world	of	its	own,	with	its	own	rules,	that	can	be	studied	without	regard	to	lower	or	
higher	scales.		For	example,	we	can	study	traffic	patterns	in	Chicago	from	a	scale	of	
kilometers	without	knowing	how	individual	cars	work	at	a	scale	of	centimeters.		
Astronomers	can	study	collisions	of	galaxies	at	a	scale	of	1021	without	knowing	the	
physics	of	individual	stars.		Chemists	can	study	molecules	at	a	scale	of	10-9	without	
regard	to	the	quarks	and	forces	that	hold	atoms	together.	

In	computer	science	we	do	the	same	thing	with	software.		We	organize	its	
functions	to	work	at	different	scales	–	we	call	them	abstractions	–	and	pay	no	
attention	to	the	inner	details	of	lower-level	functions	–	we	call	that	information	
hiding.		We	can	do	this	with	the	OS	kernel,	which	can	be	viewed	as	9	levels	of	
functions,	each	with	its	own	time	scale.	

Our	map	of	the	kernel	functions	is	included	as	the	file	OS_Levels.pdf.		Please	refer	
to	it	frequently	as	we	discuss	the	kernel	throughout	this	book.	

To	put	the	principle	of	levels	to	work,	we	need	to	agree	on	some	ground	rules	
for	how	the	levels	are	structured.	

Abstract	machines:	Each	level	can	be	viewed	as	an	abstract	machine.		An	
abstract	machine	is	an	entity	that	carries	out	defined	computational	operations	on	a	
particular	kind	of	object.		For	example,	the	abstract	machine	for	managing	files	–	the	
file	manager	–	provides	a	set	of	operations	create,	delete,	open,	close,	read,	and	
write	files.		It	allows	users	to	perform	only	those	operations	on	files,	and	no	other	



operations.		Although	a	file	appears	to	be	a	contiguous	object	–	a	linear	array	of	
bytes	–	it	is	implemented	by	a	series	of	fixed-size	records	scattered	around	the	disk.		
The	details	of	the	records	are	completely	hidden	from	the	user.	

We	can	think	of	an	abstract	machine	a	set	of	software	consisting	of	a	user	
interface,	programs	for	the	functions	visible	at	the	interface,	and	internal	data	that	
keeps	track	of	the	“state”	of	the	machine	and	of	all	the	objects	it	manages.		In	
addition,	a	machine	contains	invisible	programs	(we	call	them	“daemons”)	that	do	
internal	housekeeping	operations.		In	some	cases,	a	machine	contains	hardware	
units	that	it	manages	as	part	of	its	function	–	for	example,	the	abstract	machine	that	
provides	an	interface	from	user	to	external	disks	controls	the	disks.	

Some	of	the	components	of	an	abstract	machine	are	elements	of	smaller,	more	
primitive	abstract	machines.		For	example,	the	abstract	machine	“file	system”,	which	
manages	user	files,	may	implement	some	internal	housekeeping	functions,	such	as	
compacting	files	on	the	disk,	as	internal	background	threads.1		The	threads	
themselves	are	implemented	on	a	lower	level	abstract	machine	that	specializes	in	
threads.		The	programmers	of	the	file	system	can	ignore	the	details	of	how	threads	
are	implemented	and	simply	use	the	operations	defined	at	the	process	manager	
machine	interface,	such	as	“create	thread”	or	“delete	thread”.	

The	embedding	of	lower	level	abstract	machines	within	higher	level	machines	
creates	the	level	structure	we	have	mentioned.		Other	ground	rules:	

Visible	interface:	A	machine	M	has	an	interface	I	that	consists	of	a	set	of	
functions	F1,…,Fn.		The	visible	functions	are	implemented	as	programs	within	the	
abstract	machine.		In	operating	systems	we	call	the	visible	interface	an	API	for	
“Application	Program	Interface”.		Some	of	the	visible	functions	can	actually	be	part	
of	the	interface	of	the	next	lower	level	abstract	machine.		An	abstract	machine	can	
also	hide	lower	level	functions	that	do	not	make	sense	above	its	level.	

Nesting:	An	abstract	machine	can	use	components	from	lower	level	machines	
but	not	from	higher	level	machines.		No	part	of	an	abstract	machine	can	depend	on	
anything	in	a	higher	level.	

Downward	call	upward	return:	If	an	abstract	machine	M	needs	a	function	
provided	by	a	machine	M’,	M’	must	be	nested	with	M.		In	other	words,	M	can	call	
downward	to	a	lower	level	machine	M’	but	cannot	call	upwards.			When	it	is	done	
with	a	task,	the	lower	level	machine	can	return	its	values	upwards.	

Incremental	testing:		The	software	can	be	brought	up	and	tested	one	level	at	a	
time.		Once	testing	(or	formal	proof)	has	established	that	a	level	is	working	properly,	
we	can	go	to	work	at	installing	the	next	higher	level.		This	greatly	simplifies	the	
process	of	building	the	system	and	getting	it	to	work.	

																																																								
1	In	operating	systems	we	define	a	thread	as	the	trace	of	a	CPU	through	an	instruction	sequence.		A	
process	is	a	self-contained	virtual	machine	containing	one	or	more	threads	operating	in	the	process’s	
private	memory.		In	our	kernel	hierarchy,	processes	as	virtual	machines	are	at	level	8	and	threads	are	
at	level	2.		The	file	system	is	at	level	6	and	can	see	level	2	but	not	level	8.	



These	structure	rules	sometimes	seem	annoying.		For	example,	when	
implementing	a	file	system,	we	want	to	have	directories	that	list	all	a	user’s	files.		We	
define	directory	management	to	be	a	higher-level	abstract	machine	but	not	a	
component	of	files.		What	happens	if	we	create	a	directory	and	want	to	store	it	in	a	
file?		At	first	glance	this	looks	like	a	contradiction	to	the	downward	call	rule:	the	file	
manager	(level	6)	cannot	call	the	directory	manager	(level	7).		How	do	we	organize	
this	so	that	the	call	to	create	a	directory	does	not	come	from	the	file	system?		The	
answer	is	to	have	the	“create	directory”	operation	call	the	file	manager	to	allocate	a	
file	to	hold	the	directory.		This	works	because	the	file	manager	does	not	worry	about	
directory	management.		In	operating	systems,	we	can	always	find	a	way	to	organize	
the	software	to	avoid	upward	calls.	

You	can	see	the	implications	of	these	rules	in	the	levels	map.		The	functions	of	a	
given	level	can	be	composed	of	components	from	lower	levels.		Each	level	manages	a	
set	of	operating-system	objects.		Each	level	adds	its	set	of	objects	to	the	repertoire	
managed	by	the	whole	operating	system.		At	the	last	level	(shell)	all	the	components	
of	the	kernel	are	present.	

	


