
What	is	this	Book	on	Operating	Systems?	
Peter	J.	Denning	
5/25/19	
	
	

Operating	systems	are	among	the	largest	systems	engineered	by	humans;	they	
rival	modern	aircraft	and	ships	in	complexity.		They	are	a	gigantic	market	–	over	
$37B	annual	sales	worldwide,	not	counting	open	source	OS	related	projects.		
Commercial	OSs	approach	100	million	lines	of	code,	assembled	and	maintained	by	
enormous	teams	of	10,000	or	more	programmers.		OSs	have	to	reliably	control	
events	of	enormous	time-variability,	from	user	interactions	(minutes,	days,	years)	
all	the	way	down	to	clock	ticks	and	hardware	instructions	(picoseconds).		Amid	all	
this	complexity,	OS	vulnerabilities	are	common	–	they	enable	more	than	$600B	a	
year	of	cybercrimes	such	as	espionage,	data	exploitation,	ransomware,	malware	
invasion,	and	identity	theft.	

And	yet,	despite	all	the	complexity	and	vulnerabilities,	there	is	a	reason	that	OSs	
work	as	well	as	they	do:	they	all	are	built	around	a	relatively	small	kernel,	a	set	of	
software	routines	implementing	the	core	functions	that	all	applications	use.		Over	
the	years,	we	have	learned	how	to	build	reliable	kernels	and	as	a	result	our	
operating	systems	are	remarkably	reliable	despite	their	vulnerabilities.	

Although	OS	kernels	are	complex,	they	are	based	on	a	well	understood	set	of	
basic	principles.		If	you	really	understand	those	principles,	you	can	design	
remarkably	small,	highly	secure	kernels.		If	you	don’t	understand	those	principles,	
your	kernel	can	turn	into	an	ugly	mass	of	spaghetti.	

This	set	of	slides	is	designed	to	help	you	understand	the	basic	principles	used	by	
OS	kernels.		What	functions	does	the	kernel	perform?		Why	are	those	functions	
there?		How	can	you	use	them?	

My	approach	is	to	present	a	single	model	for	each	OS	kernel	function	and	show	
you	the	kernel	as	a	set	of	levels	layered	on	one	another.		By	keeping	the	individual	
levels	simple,	I	can	show	you	how	the	whole	thing	fits	together	into	a	working	
kernel.		Many	of	the	existing	textbooks	go	into	great	detail	about	many	possible	
ways	to	implement	each	function,	leaving	you	in	a	state	of	confusion	about	which	
one	is	best	and	how	the	whole	mass	fits	together.		Instead,	I	am	aiming	to	show	you	
how	the	fundamental	principles	lead	to	a	compact,	simple	design	of	a	kernel.			You	
can	then	go	on	to	read	one	of	the	encyclopedic	OS	books	and	have	a	much	better	
chance	to	understand	what	is	going	on.	

Why	do	it	this	way?		OSs	are	complex	systems	with	low	level	events	happening	
at	intervals	of	10-9	or	shorter	seconds,	and	user	level	events	happening	at	intervals	
of	103	seconds	or	more.		That	is	a	span	of	over	1012	orders	of	magnitude	in	the	pace	
of	events.		Few	human-designed	systems	encompass	such	a	span.		Because	the	OS	is	
all	software	resting	on	top	of	silicon	chips,	it	fits	into	a	small	space	–	a	few	chips	a	
few	centimeters	on	a	side.		Nonetheless,	getting	all	those	levels	of	software	to	work	
together,	perform	correctly,	without	freezing	or	hanging	up	or	succumbing	to	

vulnerabilities,	is	a	monumental	task.		If	you	are	a	newcomer	to	the	field,	the	
complexity	of	OSs	produced	by	thousands	of	programmers	over	several	years	will	
stagger	you.		You	do	not	have	to	be	staggered.		I	have	written	this	for	beginners.	

You	can	think	of	this	as	a	map	of	the	principles	of	operating	systems.		It	is	not	a	
map	of	any	particular	operating	system.		It	is	an	idealized	kernel	composed	of	
simple	models.	

As	we	move	through	the	kernel,	the	separate	file	OS_Levels.pdf	will	be	your	map.		
Consult	it	frequently	to	keep	the	big	picture	in	mind.	

	
History	of	Operating	Systems	

The	first	operating	systems	were	built	in	the	1950s.		By	1960	the	research	labs	
building	them	(mostly	at	universities)	had	demonstrated	time-sharing	(automatic	
process	multiplexing),	semaphores	(synchronization	of	processes),	virtual	memory	
(automatic	management	of	main	memory),	multiprogramming,	hierarchical	file	
systems,	access	control	lists	for	files,	and	hardware	support	for	interrupts,	address	
mapping,	memory	protection,	shell,	schedulers,	and	sharing	of	data	between	
memory	partitions.		These	ideas	have	stood	the	test	of	time	and	pervade	modern	
operating	systems.		I	have	included	the	essay	“Fifty	years	of	operating	systems”	to	
give	you	a	fuller	picture	of	the	origins	and	significance	of	these	innovations.	

Many	concepts	in	operating	systems	are	used	throughout	computer	science,	but	
are	not	part	of	ordinary	programming.		One	example	is	the	distinction	between	
“program”	and	“process”.		A	program	is	a	segment	of	code	that,	when	executed	on	a	
CPU,	transforms	input	data	to	output	data	in	a	specified	way.		A	process	is	a	program	
in	execution	on	a	virtual	machine.		(A	virtual	machine	is	a	simulated	replica	of	a	real	
machine.)		Operating	systems	were	intended	to	manage	the	dynamics	of	many	
programs	operating	on	behalf	of	many	simultaneous	users;	the	process	(not	the	
program)	is	the	entity	the	OS	manages.	

Another	example	is	the	idea	that	the	operating	system	is	built	from	a	collection	
on	ongoing,	nonterminating	processes.		It	is	not	simply	a	library	of	system	programs	
that	you	call	when	need.		Most	of	the	processes	are	designed	to	render	a	specific	
service	that	you	can	request	at	any	time.		If	you	open	up	a	“process	control	panel”	on	
your	computer,	you	will	typically	see	100-500	processes	listed,	even	before	you	
have	started	any	applications.		That	is	quite	a	society.	

With	such	a	population	of	processes	all	vying	for	limited	resources	such	as	CPU	
time,	disk	access,	and	memory	space,	some	rules	of	order	are	needed	to	maintain	
harmony	and	prevent	chaos.		For	example,	processes	request	service	from	other	
processes	by	sending	them	messages	and	then	stopping	to	wait	for	an	answer.		A	
service	process	waits	at	its	“homing	position”	until	a	request	message	arrives,	then	
it	serves	the	request,	returns	results	to	the	requestor,	and	returns	to	its	homing	
position.		A	message	passing	system	is	an	essential	element	of	maintaining	order	in	
the	society	of	processes.	

Another	example	is	that	processes	cannot	see	the	data	in	the	private	memories	
of	other	processes.		Data	are	stored	in	memory	partitions	accessible	only	to	their	
owners.		The	OS	hardware	and	software	prevents	any	other	process	from	accessing	
that	region	of	memory.		This	rule	of	order	guarantees	that	no	process	can	be	
suddenly	surprised	by	some	else	changing	its	data.	

In	general,	the	kernel	embodies	all	the	basic	rules	to	enable	a	society	of	
processes	to	work	effectively.	

	
	 	

Our	Scope	
The	following	questions	and	their	answers	define	the	scope	of	our	conversations.	

	
What	is	an	OS?	

• Control	program	to	safely	allocate	resources	among	competing	users	
• Environment	for	program	construction	and	execution	
• Environment	for	communication	and	coordination	with	Internet	
• Interface	to	many	services	(built	in	and	remote)	
• Maintenance	of	personal	workspaces	and	data	for	many	users	

	
What	are	the	main	goals	of	an	OS?	

• Allocating	resource	units	to	users	and	switching	them	quickly		[Multiplexing]	
• Isolating	users	--	actions	of	one	cannot	interfere	with	others		[Partitioning]	
• Controlling	access	to	and	sharing	of	digital	objects		[Protection]	
• Facilitating	work	and	programming		[Working	Environment]	
• Maintaining	speed,	small	response	time,	low	energy,	stability		[Performance]	

	
How	does	OS	differ	from	other	parts	of	CS?	

• Complex	system	of	many	subsystems	and	networks	
• Society	of	cooperating	processes	
• Many	limited	resources	serving	many	more	users	
• Concurrency	always	a	central	issue	
• Ongoing	computations	rather	than	terminating	algorithms	
• Protection	of	information	
• Constantly	under	attack	

	
What	we	do	study	here:	

• Kernel	only	(innermost	core	used	by	every	user	and	app)	
• Shell	(command	interface	to	kernel)	
• Principles	of	kernel	operation	
• Various	problems	which	drive	kernel	design	and	implementation	choices	
• Trade-offs	between	design	choices	

	
What	we	do	not	study	here:	

• Services	outside	the	kernel	(built	in	or	Internet;	the	vast	majority	of	OS	bulk)	
• How	specific	operating	systems	work	(Unix,	Windows,	etc)	
• Systems	programming	
• Systems	configurations	
• System	performance	evaluation	

	

	

