
Synchronization
Peter J. Denning

CS471/CS571

© Copyright 2001, by Peter Denning

©2001 by Peter J. Denning 2

What is synchronization?
• Requirement that one process stop to wait to pass a

point until another process sends a signal.
• The waiting point represents a condition that must be

true for subsequent execution to be valid.
• The signal represents the event of the condition

becoming true.
• Semaphores directly implement the requirement.

©2001 by Peter J. Denning 3

P1

P2

Time Lines

A

B

“P2 cannot pass B until
P1 passes A”

“P2 cannot pass B until
P1 passes A”

©2001 by Peter J. Denning 4

P1

P2

Time Lines

A

B

“P2 cannot pass B until
P1 passes A”

“P2 cannot pass B until
P1 passes A”

Signal B

Await A

Signal B = signal(sem)
Await A = wait(sem)

Guarantees tB > tA

Signal B = signal(sem)
Await A = wait(sem)

Guarantees tB > tA

©2001 by Peter J. Denning 5

Common Examples

• Process ordering
• Mutual exclusion
• Pool control
• Producer-consumer
• Readers-writers
• Private semaphore and I/O signalling
• Monitors

©2001 by Peter J. Denning 6

Process Ordering
• Precedence ordering: one process cannot begin

execution until another has finished.
• Terminate the first process with a signal semaphore

to the second.

P2sem: init c 0

P1: actions
 signal(p2sem)

P2: wait(p2sem)
 actions

©2001 by Peter J. Denning 7

Mutual Exclusion
• Allow only one of several processes in a critical

section at the same time
• Prevent race conditions with shared data processed

by the critical section.
mutex: init c 1

P1: wait(mutex)
 critical section
 signal(mutex)

P2: wait(mutex)
 critical section
 signal(mutex)

©2001 by Peter J. Denning 8

Pool Control

• Set of identical resource units
• h = GetUnit() -- wait until unit free
• ReturnUnit(h) -- allow waiter to go

GetUnit
wait(pool)
...
return h

GetUnit
wait(pool)
...
return h

ReturnUnit(h)
...
signal(pool)
return

ReturnUnit(h)
...
signal(pool)
return

I(pool)=NI(pool)=N

©2001 by Peter J. Denning 9

Producer-Consumer

• Process P produces sequence of items
x1,x2,x3,....

• Items stored in order in a buffer
• Consumer C consumes items from the buffer

in the same order, once each
• Correct operation: output of C identical to

output of P (no duplicates, no losses)

©2001 by Peter J. Denning 10

Producer-Consumer
• Buffer is bounded, can hold up to N items.
• Stop P when buffer full.
• Stop C when buffer empty.
• Semaphores:

– empty: counts number of empty buffer slots, initially N
– full: counts number of full buffer slots, initially 0

• Stop P: wait(empty)
• Stop C: wait(full)
• After insert: P says signal(full)
• After removal: C says signal (empty)

©2001 by Peter J. Denning 11

P Cbufferx1,x2,x3,... x1,x2,x3,...

©2001 by Peter J. Denning 12

P Cbufferx1,x2,x3,... x1,x2,x3,...

wait(empty)
insert
signal(full)

wait(full)
insert
signal(empty)

©2001 by Peter J. Denning 13

Readers-Writers

• Shared file
• Multiple readers and writers
• Writers exclude readers and other writers
• Readers exclude writers but not other readers
• Preventing starvation under load

– priority to readers?
– priority to writers?
– alternating?

©2001 by Peter J. Denning 14

Dining Philosophers

• Five philosophers, round table, five plates,
five forks alternating (Dijkstra 1965)

• Philosopher comes to assigned place, eats,
and departs at random times

• Philosopher needs left and right forks to eat
• All philosophers follow the same program
• How to prevent deadlock?
• Must monitor global “table state”

©2001 by Peter J. Denning 15

Private Semaphore
• Semaphore reserved for private waiting-use by a

process
• Reserve semaphore indices j=1,...,N for private

semaphores. Then j=N+1,...,M are sharable
semaphores.

• Only process i is allowed to call wait(i)
• Private semaphores useful for synchronizing

processes simulating procedure calls where process
must wait for a return

©2001 by Peter J. Denning 16

Private Semaphore
• Example of a disk driver process serving block-move

requests from user processes
• Work queue on disk driver collects user requests,

driver serves them one at a time
• driver uses STARTIO to pass task to disk
• disk uses completion interrupt to signal done
• disk interrupt handler signals driver to restart
• driver signals user process to restart

©2001 by Peter J. Denning 17

Pi:

...
PutMsg(DD,pid,a,b,r,sz)
wait(pid)
...

DD: repeat {
 (i,a,b,rw,sz) = GetMsg()
 STARTIO(a,b,rw,sz)
 wait(pid)
 signal(i)
 }

disk

IH[disk]:
 signal(DD)
 return

©2001 by Peter J. Denning 18

Pi:

...
PutMsg(DD,pid,a,b,r,sz)
wait(pid)
...

DD: repeat {
 (i,a,b,rw,sz) = GetMsg()
 STARTIO(a,b,rw,sz)
 wait(pid)
 signal(i)
 }

disk

IH[disk]:
 signal(DD)
 return

1

2

3

45

©2001 by Peter J. Denning 19

Monitors

• A high level language synchronization
structure (Hoare 1978)

• Compiler translates monitor into proper
semaphore patterns

• Much improved programming reliability

©2001 by Peter J. Denning 20

Monitors

• See the more complete description of
Monitors in separate slide presentation.

