
Threads and Processes

Peter J. Denning

© Copyright 2019, Peter J Denning

© Copyright 2019, Peter J Denning

Process

• A program in execution on virtual machine
with its own address space and CPU
– �Trace of instruction pointer through

instruction sequence�
– �Thread of control�
– Process: dynamic. Program: static.
– Abstraction of dynamics of executing program.

© Copyright 2019, Peter J Denning

Thread

• Trace of instruction pointer through
instruction sequence in an address space
– �Thread of control�
– Many threads can share one address space,

their shared memory

© Copyright 2019, Peter J Denning

Time Sharing

• A method of implementing multiple
threads on a computer

• One CPU multiplexed among processes, for
one time slice at a time.

• Creates illusion of independent concurrent
processes all running at slower speeds than
the CPU.

© Copyright 2019, Peter J Denning

CPU RAM

sw

© Copyright 2019, Peter J Denning

CPU RAM

base B
workspace

code

data

sw

length L

L

B

CPU can only access RAM
locations B,…,B+L-1

Otherwise, MEMORY
BOUND ERROR

© Copyright 2019, Peter J Denning

CPU RAM

ip

workspace

code

data

sw

Current instruction is at
address ip, within the code
segment of the workspace.

Next instruction is at ip+1,
except if branch

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid sw PCB (Process Control Blocks)

0

1

2

3

4pid = ID of running process

timer = time remaining to time slide end

PCB = snapshot of CPU state at last
context switch (in kernel private memory)

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid
2

10

sw PCBs

0

1

2

3

4process 2 running on CPU, its PCB has
image of sw at start of time slice

timer has 10 ticks remaining

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid
2

0

sw PCBs

0

1

2

3

4
timer, gone to 0, triggers
”time slice end” interrupt

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid

2

0

sw PCBs

0

1

2

3

4
CPU executes SAVESW,
which copies entire sw
into PCB[2]

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid
4

0

sw PCBs

0

1

2

3

4

OS selects process 4 to
be next on CPU

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid
4

10

sw PCBs

0

1

2

3

4CPU executes LOADSW,
which copies PDB[4] into the
CPU sw registers

timer set to time-slice value

© Copyright 2019, Peter J Denning

CPU RAM

timer

pid
4

10

sw PCBs

0

1

2

3

4

How did 4 come next after 2?

© Copyright 2019, Peter J Denning

PCBs

0

1

2

3

4

CPU RAM

timer

pid

2

10

34

Ready Listsw

3

0

1
The RL (Ready List) links all processes
waiting to run on the CPU

The RL descriptor has H (head) and T
(tail) fields

Each PCB has a link field saying which
process follows it in RL

© Copyright 2019, Peter J Denning

CPU

timer

pid

4

10

sw PCBs

2

4

RAM

21
Ready List

0

1

3

3

0

2

As part of the context switch, the
RL.head goes to pid and its successor
becomes new RL.head

The old RL.tail gets pid as its successor
and pid becomes the new RL.tail

© Copyright 2019, Peter J Denning

Context Switching

• Save the current CPU stateword to the process’s
control block.

• Select next process from head of RL and update RL.
• Load that process’s stateword into the CPU and

start running.
SAVESW

pid=CYCLE-RL(pid)
LOADSW

CYCLE-RL(A)
PCB[RL.tail].link=A
RL.tail=A
PCB[A].link=0
B=RL.head
RL.head=PCB[RL.head].link

RETURN B

© Copyright 2019, Peter J Denning

Round Robin Scheduling

• Objective: time slice end interrupt switches CPU
to next ready process

• T = time slice = max time until context switch
• Time slide end interrupt

activates this routine: disable
SAVESW
set timer = T
pid=CYCLE-RL(pid)
LOADSW
enable
return

Process 0

• Think of a scenario that leaves RL empty. What
happens?

• Our algorithms will leave RL(head,tail)=(0,0).
Next context switch goes to process 0.

• Process 0 is a special idling process that runs
when there are no others (e.g., a screensaver).

• When a process re-enters RL after wakeup,
process 0 will be preempted.

